C结构体里的冒号
unsigned m_ScrollType : 3; //uint型,占3bit;
unsigned m_ScrollDirection : 1; //uint型,占1bit;
unsigned m_AlignType : 2; //uint型,占2bit;
unsigned m_VAlignType: 2; //uint型,占2bit;
unsigned :1; //uint型,占1bit;
unsigned char m_StringType : 8; //uchar型,占8bit;
: 是C 中的一种语法, 称为 位段或者是 位域
分配变量的所占的bit数; int一般为32bit,但如果int a :1 表示此处的a只占1bit;
冒号是位域!根据你实际需要的空间来分配,可以节省空间!
一、位域
有些信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位。例如在存放一个开关量时,只有0和1 两种状态, 用一位二进位即可。为了节省存储空间,并使处理简便,C语言又提供了一种数据结构,称为“位域”或“位段”。所谓“位域”是把一个字节中的二进位划分为几个不同的区域,并说明每个区域的位数。每个域有一个域名,允许在程序中按域名进行操作。这样就可以把几个不同的对象用一个字节的二进制位域来表示。一、位域的定义和位域变量的说明位域定义与结构定义相仿,其形式为:
struct 位域结构名
{ 位域列表 };
其中位域列表的形式为: 类型说明符 位域名:位域长度
例如:
struct bs
{
int a:8;
int b:2;
int c:6;
};
位域变量的说明与结构变量说明的方式相同。 可采用先定义后说明,同时定义说明或者直接说明这三种方式。例如:
struct bs
{
int a:8;
int b:2;
int c:6;
}data;
说明data为bs变量,共占两个字节。其中位域a占8位,位域b占2位,位域c占6位。对于位域的定义尚有以下几点说明:
1. 一个位域必须存储在同一个字节中,不能跨两个字节。如一个字节所剩空间不够存放另一位域时,应从下一单元起存放该位域。也可以有意使某位域从下一单元开始。例如:
struct bs
{
unsigned a:4
unsigned :0 /*空域*/
unsigned b:4 /*从下一单元开始存放*/
unsigned c:4
}
在这个位域定义中,a占第一字节的4位,后4位填0表示不使用,b从第二字节开始,占用4位,c占用4位。
2. 由于位域不允许跨两个字节,因此位域的长度不能大于一个字节的长度,也就是说不能超过8位二进位。
3. 位域可以无位域名,这时它只用来作填充或调整位置。无名的位域是不能使用的。例如:
struct k
{
int a:1
int :2 /*该2位不能使用*/
int b:3
int c:2
};
从以上分析可以看出,位域在本质上就是一种结构类型, 不过其成员是按二进位分配的。
二、位域的使用
位域的使用和结构成员的使用相同,其一般形式为: 位域变量名·位域名 位域允许用各种格式输出。
main(){
struct bs
{
unsigned a:1;
unsigned b:3;
unsigned c:4;
} bit,*pbit;
bit.a=1;
bit.b=7;
bit.c=15;
printf("%d,%d,%d\n",bit.a,bit.b,bit.c);
pbit=&bit;
pbit->a=0;
pbit->b&=3;
pbit->c|=1;
printf("%d,%d,%d\n",pbit->a,pbit->b,pbit->c);
}
上例程序中定义了位域结构bs,三个位域为a,b,c。说明了bs类型的变量bit和指向bs类型的指针变量pbit。这表示位域也是可以使用指针的。
程序的9、10、11三行分别给三个位域赋值。( 应注意赋值不能超过该位域的允许范围)程序第12行以整型量格式输出三个域的内容。第13行把位域变量bit的地址送给指针变量pbit。第14行用指针方式给位域a重新赋值,赋为0。第15行使用了复合的位运算符"&=", 该行相当于: pbit->b=pbit->b&3位域b中原有值为7,与3作按位与运算的结果为3(111&011=011,十进制值为 3)。同样,程序第16行中使用了复合位运算"|=", 相当于: pbit->c=pbit->c|1其结果为15。程序第17行用指针方式输出了这三个域的值。
理解C语言位域
作者:Tony 来源: 发表时间:2006-06-19 浏览次数: 1099 字号:大 中 小
这也是在ChinaUnix上看了几篇关于C语言'位域(Bit Fields)'的帖子之后,才想写下这篇文章的。其实在平时的工作中很少使用到'位域',我是搞服务器端程序设计的,大容量的内存可以让我毫不犹豫的任意'挥霍'^_^。想必搞嵌入式编程的朋友们对位域的使用应该不陌生吧。这里我也仅仅是凭着对C语言钻研的兴趣来学习一下'位域'的相关知识的,可能有些说法没有实践,缺乏说服力。
具体也不是很清楚当年C语言的创造者为什么要加入位域这一语法支持,那是太遥远的事情了,我们不需要再回顾了,既然大师们为我们创造了它,我们使用便是了。
毋庸置疑,位域的引入给用户的最大的好处莫过于可以有效的利用'昂贵'的内存和操作bit的能力了。而且这种操作bit位的能力很是方便,利用结构体域名即可对这些bit进行操作。例如:
struct foo {
int a : 1;
int b : 2;
short c : 1;
};
struct foo aFoo;
aFoo.a = 1;
aFoo.b = 3;
aFoo.c = 0;
通过结构体实例.域名即可修改某些bit得值,这些都是编译器的'甜头'。当然我们也可以自己通过一些'掩码'和移位操作来修改这些bit,当然如果不是十分需要,我们是不需要这么做的。
位域还提供一种叫'匿名'位域的语法,它常用来'填缺补漏',由于是'匿名',所以你不能像上面那样去访问它。如:
struct foo1 {
int a : 1;
int : 2;
short c : 1;
};
在foo1的成员a和c之间有一个2 bits的匿名位域。
在foo结构体的定义中,成员a虽然类型为int,但是它仅仅占据着4个字节中的一个bit的空间;类似b占据2个bit空间,但是b到底是占据第一个int的2个bit空间呢还是第二个int的2个bit空间呢?这里实际上也涉及到如何对齐带有'位域'的结构体这样一个问题。我们来分析一下。
我们再来看看下面两个结构体定义:
struct foo2 {
char a : 2;
char b : 3;
char c : 1;
};
struct foo3 {
char a : 2;
char b : 3;
char c : 7;
};
我们来打印一下这两个结构体的大小,我们得到的结果是:
sizeof(struct foo2) = 1
sizeof(struct foo3) = 2
显然都不是我们期望的,如果按照正常的内存对齐规则,这两个结构体大小均应该为3才对,那么问题出在哪了呢?首先通过这种现象我们可以肯定的是:带有'位域'的结构体并不是按照每个域对齐的,而是将一些位域成员'捆绑'在一起做对齐的。以foo2为例,这个结构体中所有的成员都是char型的,而且三个位域占用的总空间为6 bit < 8 bit(1 byte),这时编译器会将这三个成员'捆绑'在一起做对齐,并且以最小空间作代价,这就是为什么我们得到sizeof(struct foo2) = 1这样的结果的原因了。再看看foo3这个结构体,同foo2一样,三个成员类型也都是char型,但是三个成员位域所占空间之和为9
bit > 8 bit(1 byte),这里位域是不能跨越两个成员基本类型空间的,这时编译器将a和b两个成员'捆绑'按照char做对齐,而c单独拿出来以char类型做对齐,这样实际上在b和c之间出现了空隙,但这也是最节省空间的方法了。我们再看一种结构体定义:
struct foo4 {
char a : 2;
char b : 3;
int c : 1;
};
在foo4中虽然三个位域所占用空间之和为6 bit < 8 bit(1 byte),但是由于char和int的对齐系数是不同的,是不能捆绑在一起,那是不是a、b捆绑在一起按照char对齐,c单独按照int对齐呢?我们打印一下sizeof(struct foo4)发现结果为4,也就是说编译器把a、b、c一起捆绑起来并以int做对齐了。
通过上面的例子我们发现很难总结出很规律性的东西,但是带有'位域'的结构体的对齐有条原则可以遵循,那就是:"尽量减少结构体的占用空间"。当然显式的使用内存对齐的机会也并不多。^_^
C结构体里的冒号的更多相关文章
- 读陈浩的《C语言结构体里的成员数组和指针》总结,零长度数组
原文链接:C语言结构体里的成员数组和指针 复制例如以下: 单看这文章的标题,你可能会认为好像没什么意思.你先别下这个结论,相信这篇文章会对你理解C语言有帮助.这篇文章产生的背景是在微博上,看到@Lar ...
- C# Struct结构体里数组长度的指定
typedef struct Point{ unsigned short x; unsigned short y; }mPoint;//点坐标 typedef struct Line{ mPoint ...
- c语言结构体中的冒号的用法
结构体中常见的冒号的用法是表示位域. 有些信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位.例如在存放一个开关量时,只有0和1 两种状态, 用一位二进位即可.为了节省 ...
- 深入理解指针—>结构体里的成员数组和指针
单看这文章的标题,你可能会觉得好像没什么意思.你先别下这个结论,相信这篇文章会对你理解C语言有帮助.这篇文章产生的背景是在微博上,看到@Laruence同学出了一个关于C语言的题,微博链接.微博截图如 ...
- c结构体里的数组与指针
/* 訪问成员数组名事实上得到的是数组的相对地址.而訪问成员指针事实上是相对地址里的内容 */ struct buf_str { int length; char buf[0]; }; struct ...
- C语言结构体里的成员数组和指针
struct test{ int i; char *p; }; struct test *str; ; char *b = "ioiodddddddddddd"; str = (s ...
- 结构体里的“位域”(bit-field)结构
首先看一个题目: #include <iostream> using namespace std; #include <string.h> typedef struct AA{ ...
- 关于c#里的集合的,结构体,枚举的定义,解释与应用
那么先写一下 集合 . 集合和数组很相似,数组里的类型是必须同一类型,固定长度.然而集合里的可以是不同类型,不固定长度的.所以集合运用的灵活度要更高一些. 要使用集合,必须先引用命名空间:using ...
- Golang 入门 : 结构体(struct)
Go 通过类型别名(alias types)和结构体的形式支持用户自定义类型,或者叫定制类型.试图表示一个现实世界中的实体. 结构体由一系列命名的元素组成,这些元素又被称为字段,每个字段都有一个名称和 ...
随机推荐
- MVVMLight消息通知实现机制详解(二)
接上文 MVVMLight消息通知实现机制详解(一) 该工具的内部主要逻辑是以字典模式进行储存持有订阅对象设置的传入参数Type类型.Key值.Action.Target(订阅对象本身) 在发生订阅事 ...
- 湖南集训Day1
难度 不断网:☆☆☆ 断网:☆☆☆☆ /* 卡特兰数取模 由于数据范围小,直接做. 考试时断网.忘记卡特兰数公式,推错了只有5分. 数学公式要记别每次都现用现搜!!! */ #include<i ...
- [Swift通天遁地]九、拔剑吧-(11)创建强大的Pinterest风格的瀑布流界面
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...
- 安科 OJ 1054 排队买票 (递归,排列组合)
时间限制:1 s 空间限制:128 M 题目描述 有M个小孩到公园玩,门票是1元.其中N个小孩带的钱为1元,K个小孩带的钱为2元.售票员没有零钱,问这些小孩共有多少种排队方法,使得售票员总能找得开零钱 ...
- 实现div毛玻璃背景
毛玻璃效果 ios里毛玻璃效果的使用非常多,本文介绍一个实现div毛玻璃背景的方法 CSS3 Filter CSS3的Filter主要用在图像的特效处理上,默认值为none,还有以下备选项: 1. ...
- Python--10、生产者消费者模型
生产者消费者模型(★) 平衡生产线程和消费线程的工作能力来提高程序的整体处理数据的速度.程序中有两类角色:生产数据.消费数据实现方式:生产->队列->消费. 通过一个容器来解决生产者和消费 ...
- Android 升级安装APK兼容Android7.0,解决FileUriExposedException
我们在开发app时避免不了需要添加应用内升级功能.当app启动时,如果检测到最新版本,将apk安装包从服务器下载下来,执行安装.安装apk的代码一般写法如下,网上随处可以搜到 public stati ...
- Android Studio查看CPU使用率。
进入AS自带的CMD,依次输入: (1)进入Android Atudio安卓的目录: 1.H: 2.cd AndroidStudio\sdk\platform-tools (2)adb shell ( ...
- 基于openstack平台的几种Cloud DB解决方案
方案一.openstack 官方 trove解决方案 此方案进行过镜像的打包,由于网络问题,还未能成功实现 方案二.salt 或者ansible+ docker 由于 docker部署数据库,在数据库 ...
- SSL&TLS传输层加密协议实现图解--(重要)
一.SSL&TLS 1.SSL:Secure Sockets Layer ,加密套接字协议层 1)SSL是为网络通信提供安全及数据完整性的一种安全协议,在传输层对网络连接进行加密 Secure ...