题目描述

组合数C(n,m)表示的是从n个物品中选出m个物品的方案数。举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法。根据组合数的定 义,我们可以给出计算组合数的一般公式:

C(n,m)=n!/m!(n-m)!

其中n! = 1 × 2 × · · · × n

小葱想知道如果给定n,m和k,对于所有的0 <= i <= n,0 <= j <= min(i,m)有多少对 (i,j)满足C(i,j)是k的倍数。

输入输出格式

输入格式:

第一行有两个整数t,k,其中t代表该测试点总共有多少组测试数据,k的意义见 【问题描述】。

接下来t行每行两个整数n,m,其中n,m的意义见【问题描述】。

输出格式:

t行,每行一个整数代表答案。

输入输出样例

输入样例#1:

1 2
3 3
输出样例#1:

1
输入样例#2:

2 5
4 5
6 7
输出样例#2:

0
7

说明

【样例1说明】

在所有可能的情况中,只有C(2,1)=2是2的倍数。

【子任务】

這個題,首先暴力思路是質因數分解。(70分)

 #include<cstdio>
int t,k,n,m,ans,pd,a;
int s[]={,,,,,,,};
int bz[],bd[];
int main(){
freopen("problem.in","r",stdin);
freopen("problem.ans","w",stdout);
scanf("%d%d",&t,&k);
for(int i=;i<&&k>=s[i];i++) while(k%s[i]==){k/=s[i];bz[i]++;}
while(t--){
ans=;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=i&&j<=m;j++){
pd=;
for(int k=j+;k<=i;k++){
a=k;
for(int l=;l<&&a>=s[l];l++) while(a%s[l]==){a/=s[l];bd[l]++;}
}
for(int k=;k<=i-j;k++){
a=k;
for(int l=;l<&&a>=s[l];l++) while(a%s[l]==){a/=s[l];bd[l]--;}
}
for(int k=;k<;k++){
if(bd[k]<bz[k]) pd=;
bd[k]=;
}
ans+=pd;
}
printf("%d\n",ans);
}
}

暴力

然後,組合數有一個遞推公式,即C(i,j)=C(i-1,j)+C(i-1,j-1),也就是大名鼎鼎的楊輝三角。

 #include<cstdio>
int t,k,n,m,ans;
int c[][];
int main(){
freopen("problem.in","r",stdin);
freopen("problem.ans","w",stdout);
scanf("%d%d",&t,&k);
c[][]=c[][]=;
for(int i=;i<=;i++)
for(int j=;j<=i;j++){
c[i][j]=c[i-][j]+c[i-][j-];
c[i][j]%=k;
}
while(t--){
ans=;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=i&&j<=m;j++)
if(!c[i][j]) ++ans;
printf("%d\n",ans);
}
return ;
}

90分

而後提前處理一下,把查詢變成O(1)。

 1 #include<cstdio>
2 int t,k,n,m,a;
3 int c[2010][2010];
4 int ans[2010][2010];
5 int main(){
6 freopen("problem.in","r",stdin);
7 freopen("problem.ans","w",stdout);
8 scanf("%d%d",&t,&k);
9 c[1][0]=c[1][1]=1;
10 for(int i=2;i<=2000;i++)
11 for(int j=0;j<=i;j++){
12 c[i][j]=c[i-1][j]+c[i-1][j-1];
13 c[i][j]%=k;
14 }
15 for(int i=1;i<=2000;i++){
16 a=0;
17 for(int j=0;j<i;j++){
18 if(!c[i][j]) ++a;
19 ans[i][j]=ans[i-1][j]+a;
20 }
21 for(int j=i;j<=2000;j++) ans[i][j]=ans[i][i-1];
22 }
23 while(t--){
24 scanf("%d%d",&n,&m);
25 printf("%d\n",ans[n][m]);
26 }
27 return 0;
28 }

NOIP第二水的題,而後。。。

[NOIP2016day2T1] 組合數問題(problem)的更多相关文章

  1. NOIP2016 D2T1 組合數問題(problem)

    题目描述 组合数C(n,m)表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们 ...

  2. 何解決 LinqToExcel 發生「無法載入檔案或組件」問題何解決 LinqToExcel 發生「無法載入檔案或組件」問題

    在自己的主機上透過 Visual Studio 2013 與 IISExpress 開發與測試都還正常,但只要部署到測試機或正式機,就是沒辦法順利執行,卡關許久之後找我協助.我發現錯誤訊息確實很「一般 ...

  3. [亂數] <細說> C/C++ 亂數基本使用與常見問題

    陸陸續續寫了 EA  一.二年,以前亂數引導文回頭看時才發現,怎麼有這麼多細節的錯誤.沒系統. 這篇文章主要引導初學者使用亂數,同時附上常被翻出來討論的議題,C/C++適用,唯以 C 語言撰之. 也由 ...

  4. D. Rescue Nibel! 解析(思維、組合、離散化、差分)

    Codeforce 1420 D. Rescue Nibel! 解析(思維.組合.離散化.差分) 今天我們來看看CF1420D 題目連結 題目 給你\(n\)個區間,求有幾種方法使得\(k\)個區間的 ...

  5. oracle系統表、數據字典介紹與日常問題診斷

    oracle系統表.數據字典介紹與日常問題診斷 數據字典是由唯讀的table和view組成的,產生於$oracle_home\rdbms\admin\catalog.sql.裡面儲存Oracle資料庫 ...

  6. 【Java算法學習】斐波那契數列問題-兔子產子經典問題

    /** * 用遞推算法求解斐波那契數列:Fn = Fn-2 +Fn-1; */ import java.util.*; public class Fibonacci { public static v ...

  7. [ Eclipse ] [ Problem ] Eclipse 無法開啟問題

    因為 Eclipse 在設定環境的過程掛掉太多次,擷取一些網路上優秀的文章當作備份 http://www.ewdna.com/2013/12/Eclipse-Loading-Workbench.htm ...

  8. (转)約瑟夫問題的兩個O(log n)解法

    約瑟夫問題的兩個O(log n)解法 這個是學習編程時的一個耳熟能詳的問題了: n個人(編號爲0,1,...,n-1)圍成一個圈子,從0號開始依次報數,每數到第m個人,這個人就得自殺, 之後從下個人開 ...

  9. ROHS無鉛問題解答!ROHS IPC SGS

    無鉛smt(smd)問題1. 問Maxim關于無鉛的定義是什么?答無鉛表示在封裝或產品制造中不含鉛(化學符號為Pb).IC封裝中,Pb在外部引腳拋光或電鍍中很常見.對于晶片級封裝(UCSP和倒裝芯片) ...

随机推荐

  1. 63.ExtJs事件(自定义事件、on、eventManager)示例

    转自:https://blog.csdn.net/leadergg/article/details/5927614?utm_source=blogxgwz5 ExtJs事件(自定义事件.on.even ...

  2. Flink之Stateful Operators

    Implementing Stateful Functions source function的stateful看官网,要加lock Declaring Keyed State at the Runt ...

  3. 创建 /dev/video0 节点 (转载)

    转自:http://blog.csdn.net/linuxmake/article/details/8208464 最近做摄像头驱动,发现没有 /dev/video0节点,经过查看发现是内核编译时没有 ...

  4. discuz的全局变量

    $_G 保存了 discuz! 中所有的预处理数据 缓存能够很好的提高程序的性能,一些配置数据没必要每次都查询数据库,只要在修改了的时候更新下缓存即可. Discuz! 中所有的缓存保存在 $_G[c ...

  5. 在JavaScript中"+"什么时候是链接符号,什么时候是加法运算?

    二元加法运算符“+”在两个操作数都是数字或都是字符串时,计算结果是显而易见的.加号“+”的转换规则优先考虑字符串连接,如果其中一个操作数是字符串或者转换为字符串的对象,另外一个操作数会转换为字符串,加 ...

  6. 【洛谷4770/UOJ395】[NOI2018]你的名字(后缀数组_线段树合并)

    题目: 洛谷4770 UOJ395 分析: 一个很好的SAM应用题-- 一句话题意:给定一个字符串\(S\).每次询问给定字符串\(T\)和两个整数\(l\).\(r\),求\(T\)有多少个本质不同 ...

  7. [转]mysql的约束

    转自:http://blog.csdn.net/kqygww/article/details/8882990 MySQL中约束保存在information_schema数据库的table_constr ...

  8. Spring Cloud (10) Hystrix-监控面板

    Hystrix DashBoard 断路器是根据一段时间窗内的请求状况来判断并操作断路器的打开和关闭状态的.Hystrix Dashboard是作为断路器状态的一个组件,提供了数据监控和友好的图形化界 ...

  9. Jquery 实现列表的显示和隐藏

    本人github源码下载地址:https://github.com/liuyanpeng521/ListChange.git

  10. Redis 的简单运算

    Redis 的简单运算 命令 说明 备注 incr key 在原字段上加 1 只能对整数操作 incrby key increment 在原字段上加上整数 (increment) 只能对整数操作 de ...