caffe模型各层数据和参数可视化
先用caffe对cifar10进行训练,将训练的结果模型进行保存,得到一个caffemodel,然后从测试图片中选出一张进行测试,并进行可视化。
#加载必要的库
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import sys,os,caffe
#设置当前目录,判断模型是否训练好
caffe_root = '/home/bnu/caffe/'
sys.path.insert(0, caffe_root + 'python')
os.chdir(caffe_root)
if not os.path.isfile(caffe_root + 'examples/cifar10/cifar10_quick_iter_4000.caffemodel'):
print("caffemodel is not exist...")
#利用提前训练好的模型,设置测试网络
caffe.set_mode_gpu()
net = caffe.Net(caffe_root + 'examples/cifar10/cifar10_quick.prototxt',
caffe_root + 'examples/cifar10/cifar10_quick_iter_4000.caffemodel',
caffe.TEST)
net.blobs['data'].data.shape
(1, 3, 32, 32)
#加载测试图片,并显示
im = caffe.io.load_image('examples/images/32.jpg')
print im.shape
plt.imshow(im)
plt.axis('off')
(32, 32, 3)
(-0.5, 31.5, 31.5, -0.5)
# 编写一个函数,将二进制的均值转换为python的均值
def convert_mean(binMean,npyMean):
blob = caffe.proto.caffe_pb2.BlobProto()
bin_mean = open(binMean, 'rb' ).read()
blob.ParseFromString(bin_mean)
arr = np.array( caffe.io.blobproto_to_array(blob) )
npy_mean = arr[0]
np.save(npyMean, npy_mean )
binMean=caffe_root+'examples/cifar10/mean.binaryproto'
npyMean=caffe_root+'examples/cifar10/mean.npy'
convert_mean(binMean,npyMean)
#将图片载入blob中,并减去均值
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
transformer.set_mean('data', np.load(npyMean).mean(1).mean(1)) # 减去均值
transformer.set_raw_scale('data', 255)
transformer.set_channel_swap('data', (2,1,0))
net.blobs['data'].data[...] = transformer.preprocess('data',im)
inputData=net.blobs['data'].data
#显示减去均值前后的数据
plt.figure()
plt.subplot(1,2,1),plt.title("origin")
plt.imshow(im)
plt.axis('off')
plt.subplot(1,2,2),plt.title("subtract mean")
plt.imshow(transformer.deprocess('data', inputData[0]))
plt.axis('off')
(-0.5, 31.5, 31.5, -0.5)
#运行测试模型,并显示各层数据信息
net.forward()
[(k, v.data.shape) for k, v in net.blobs.items()]
[('data', (1, 3, 32, 32)),
('conv1', (1, 32, 32, 32)),
('pool1', (1, 32, 16, 16)),
('conv2', (1, 32, 16, 16)),
('pool2', (1, 32, 8, 8)),
('conv3', (1, 64, 8, 8)),
('pool3', (1, 64, 4, 4)),
('ip1', (1, 64)),
('ip2', (1, 10)),
('prob', (1, 10))]
#显示各层的参数信息
[(k, v[0].data.shape) for k, v in net.params.items()]
[('conv1', (32, 3, 5, 5)),
('conv2', (32, 32, 5, 5)),
('conv3', (64, 32, 5, 5)),
('ip1', (64, 1024)),
('ip2', (10, 64))]
# 编写一个函数,用于显示各层数据
def show_data(data, padsize=1, padval=0):
data -= data.min()
data /= data.max() # force the number of filters to be square
n = int(np.ceil(np.sqrt(data.shape[0])))
padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
data = np.pad(data, padding, mode='constant', constant_values=(padval, padval)) # tile the filters into an image
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
plt.figure()
plt.imshow(data,cmap='gray')
plt.axis('off')
plt.rcParams['figure.figsize'] = (8, 8)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
#显示第一个卷积层的输出数据和权值(filter)
show_data(net.blobs['conv1'].data[0])
print net.blobs['conv1'].data.shape
show_data(net.params['conv1'][0].data.reshape(32*3,5,5))
print net.params['conv1'][0].data.shape
(1, 32, 32, 32)
(32, 3, 5, 5)
#显示第一次pooling后的输出数据
show_data(net.blobs['pool1'].data[0])
net.blobs['pool1'].data.shape
(1, 32, 16, 16)
#显示第二次卷积后的输出数据以及相应的权值(filter)
show_data(net.blobs['conv2'].data[0],padval=0.5)
print net.blobs['conv2'].data.shape
show_data(net.params['conv2'][0].data.reshape(32**2,5,5))
print net.params['conv2'][0].data.shape
(1, 32, 16, 16)
(32, 32, 5, 5)
#显示第三次卷积后的输出数据以及相应的权值(filter),取前1024个进行显示
show_data(net.blobs['conv3'].data[0],padval=0.5)
print net.blobs['conv3'].data.shape
show_data(net.params['conv3'][0].data.reshape(64*32,5,5)[:1024])
print net.params['conv3'][0].data.shape
(1, 64, 8, 8)
(64, 32, 5, 5)
#显示第三次池化后的输出数据
show_data(net.blobs['pool3'].data[0],padval=0.2)
print net.blobs['pool3'].data.shape
(1, 64, 4, 4)
# 最后一层输入属于某个类的概率
feat = net.blobs['prob'].data[0]
print feat
plt.plot(feat.flat)
[ 5.21440245e-03 1.58397834e-05 3.71246301e-02 2.28459597e-01
1.08315737e-03 7.17785358e-01 1.91939052e-03 7.67927198e-03
6.13298907e-04 1.05107691e-04]
[<matplotlib.lines.Line2D at 0x7f3d882b00d0>]
从输入的结果和图示来看,最大的概率是7.17785358e-01,属于第5类(标号从0开始)。与cifar10中的10种类型名称进行对比:
airplane、automobile、bird、cat、deer、dog、frog、horse、ship、truck
根据测试结果,判断为dog。 测试无误!
原文见:http://www.cnblogs.com/denny402/p/5105911.html
caffe模型各层数据和参数可视化的更多相关文章
- Caffe学习系列(17):模型各层数据和参数可视化
cifar10的各层数据和参数可视化 .caret,.dropup>.btn>.caret{border-top-color:#000!important}.label{border:1p ...
- Caffe学习笔记4图像特征进行可视化
Caffe学习笔记4图像特征进行可视化 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hit201 ...
- Caffe模型读取
caffe模型最终保存使用过的protobuf形式,将一个已经训练好的caffe模型读取出来,可以参考如下: 1,包含的头文件: #include <google/protobuf/io/cod ...
- (原)linux下caffe模型转tensorflow模型
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/7419352.html 参考网址: https://github.com/ethereon/caffe- ...
- TensorFlow模型转为caffe模型
最近由于要将训练好的模型移植到硬件上,因此需要将TensorFlow转为caffe模型. caffe模型需要两个文件,一个是定义网络结构的prototxt,一个是存储了参数的caffemodel文件. ...
- tensorflow笔记:模型的保存与训练过程可视化
tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 ...
- 使用caffe模型测试图片(python接口)
1.加载相关模块 1.1 加载numpy import numpy as np 1.2 加载caffe 有两种方法. 方法一(静态导入): 找到当前环境使用的python的site-packages目 ...
- c++ 和 matlab 下的caffe模型输入差异
在向一个caffe模型传递输入数据的时候,要注意以下两点: 1. opencv中Mat数据在内存中的存放方式是按行存储,matlab中图像在内存中的存放方式是按列存储. 2. opencv中Mat数据 ...
- caffe模型参数解释
作者:wjmishuai 出处: http://blog.csdn.net/wjmishuai/article/details/50890214 原始数据是28*28 1:数据层: layer { n ...
随机推荐
- bzoj3262: 陌上花开(cdq分治+树状数组)
3262: 陌上花开 题目:传送门 题解: %%%cdq分治 很强大的一个暴力...感觉比分块高级多了 这道题目就是一个十分经典的三维偏序的例题: 一维直接暴力排序x 二维用csq维护y 三维用树状数 ...
- 3.多线程传参,以及tuple数组
#include <Windows.h> #include <thread> #include <iostream> #include <tuple> ...
- Python之Linux下的virtualenv
在使用 Python 开发的过程中,工程一多,难免会碰到不同的工程依赖不同版本的库的问题: 亦或者是在开发过程中不想让物理环境里充斥各种各样的库,引发未来的依赖灾难. 此时,我们需要对于不同的工程使用 ...
- jq操作属性,元素,样式,事件
操作属性: 单个 $('选择器').attr('属性名','属性值'); 多个 $('选择器').attr({'属性名':'属性值','':''}); eg: $('#a1').attr('flag' ...
- 用canvas画一个的小画板(PC端移动端都能用)
前言 本篇的内容主要包括: canvas标签简介 画板的功能简介 画板的JS部分(包括:1.获取画布 2.使画板全屏幕显示且自适应 3.如何绘制直线 4.绘画时的三种状态(鼠标点击.移动.离开)5.画 ...
- Core Java(二)
二 .JAVA语言基础 1.注释,标识符,关键字 Comments 用于解释说明程序的文字 Java中注释分类格式 单行注释:格式: //注释文字 多行 ...
- shell编程笔记1
参考文章:1 http://blog.csdn.net/wuwenxiang91322/article/details/9259877 通过chmod改变文件权限 补充知识: 1Linux文件的三 ...
- HDU 1338 Game Prediction【贪心】
解题思路: 给出 n m 牌的号码是从1到n*m 你手里的牌的号码是1到n*m之间的任意n个数,每张牌都只有一张,问你至少赢多少次 可以转化为你最多输max次,那么至少赢n-max次 而最多输max ...
- 线段树(segment tree )
http://www.cnblogs.com/TenosDoIt/p/3453089.html 写的非常好! 很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少. 这让很 ...
- phpstudy创建新站点-默认打不开
phpstudy中Apache中httpd.conf中如下语句前#要有 #Include conf/extra/httpd-vhosts.conf