POJ 3723 Tree(树链剖分)
POJ 3237 Tree
就多一个取负操作,所以线段树结点就把最大和最小值存下来,每次取负的时候,最大和最小值取负后。交换就可以
代码:
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std; const int N = 10005;
const int INF = 0x3f3f3f3f;
int dep[N], fa[N], son[N], sz[N], top[N], id[N], idx, val[N];
int first[N], next[N * 2], vv[N * 2], en; struct Edge {
int u, v, val;
Edge() {}
Edge(int u, int v, int val) {
this->u = u;
this->v = v;
this->val = val;
}
} e[N]; void init() {
en = 0;
idx = 0;
memset(first, -1, sizeof(first));
} void add_Edge(int u, int v) {
vv[en] = v;
next[en] = first[u];
first[u] = en++;
} void dfs1(int u, int f, int d) {
dep[u] = d;
sz[u] = 1;
fa[u] = f;
son[u] = 0;
for (int i = first[u]; i + 1; i = next[i]) {
int v = vv[i];
if (v == f) continue;
dfs1(v, u, d + 1);
sz[u] += sz[v];
if (sz[son[u]] < sz[v])
son[u] = v;
}
} void dfs2(int u, int tp) {
id[u] = ++idx;
top[u] = tp;
if (son[u]) dfs2(son[u], tp);
for (int i = first[u]; i + 1; i = next[i]) {
int v = vv[i];
if (v == fa[u] || v == son[u]) continue;
dfs2(v, v);
}
} #define lson(x) ((x<<1)+1)
#define rson(x) ((x<<1)+2) struct Node {
int l, r, Max, Min;
bool neg;
} node[N * 4]; void pushup(int x) {
node[x].Max = max(node[lson(x)].Max, node[rson(x)].Max);
node[x].Min = min(node[lson(x)].Min, node[rson(x)].Min);
} void pushdown(int x) {
if (node[x].neg) {
node[lson(x)].Max = -node[lson(x)].Max;
node[rson(x)].Max = -node[rson(x)].Max;
node[lson(x)].Min = -node[lson(x)].Min;
node[rson(x)].Min = -node[rson(x)].Min;
swap(node[lson(x)].Max, node[lson(x)].Min);
swap(node[rson(x)].Max, node[rson(x)].Min);
node[lson(x)].neg = !node[lson(x)].neg;
node[rson(x)].neg = !node[rson(x)].neg;
node[x].neg = false;
}
} void build(int l, int r, int x = 0) {
node[x].l = l; node[x].r = r; node[x].neg = false;
if (l == r) {
node[x].Max = node[x].Min = val[l];
return;
}
int mid = (l + r) / 2;
build(l, mid, lson(x));
build(mid + 1, r, rson(x));
pushup(x);
} void change(int v, int val, int x = 0) {
if (node[x].l == node[x].r) {
node[x].Max = node[x].Min = val;
return;
}
int mid = (node[x].l + node[x].r) / 2;
pushdown(x);
if (v <= mid) change(v, val, lson(x));
if (v > mid) change(v, val, rson(x));
pushup(x);
} void negate(int l, int r, int x = 0) {
if (node[x].l >= l && node[x].r <= r) {
node[x].neg = !node[x].neg;
node[x].Max = -node[x].Max;
node[x].Min = -node[x].Min;
swap(node[x].Max, node[x].Min);
return;
}
int mid = (node[x].l + node[x].r) / 2;
pushdown(x);
if (l <= mid) negate(l, r, lson(x));
if (r > mid) negate(l, r, rson(x));
pushup(x);
} int query(int l, int r, int x = 0) {
if (node[x].l >= l && node[x].r <= r) {
return node[x].Max;
}
int mid = (node[x].l + node[x].r) / 2;
pushdown(x);
int ans = -INF;
if (l <= mid) ans = max(ans, query(l, r, lson(x)));
if (r > mid) ans = max(ans, query(l, r, rson(x)));
pushup(x);
return ans;
} void gao1(int u, int v) {
int tp1 = top[u], tp2 = top[v];
while (tp1 != tp2) {
if (dep[tp1] < dep[tp2]) {
swap(tp1, tp2);
swap(u, v);
}
negate(id[tp1], id[u]);
u = fa[tp1];
tp1 = top[u];
}
if (u == v) return;
if (dep[u] > dep[v]) swap(u, v);
negate(id[son[u]], id[v]);
} int gao2(int u, int v) {
int ans = -INF;
int tp1 = top[u], tp2 = top[v];
while (tp1 != tp2) {
if (dep[tp1] < dep[tp2]) {
swap(tp1, tp2);
swap(u, v);
}
ans = max(ans, query(id[tp1], id[u]));
u = fa[tp1];
tp1 = top[u];
}
if (u == v) return ans;
if (dep[u] > dep[v]) swap(u, v);
ans = max(ans, query(id[son[u]], id[v]));
return ans;
} int T, n; int main() {
scanf("%d", &T);
while (T--) {
init();
scanf("%d", &n);
int u, v, w;
for (int i = 1; i < n; i++) {
scanf("%d%d%d", &u, &v, &w);
add_Edge(u, v);
add_Edge(v, u);
e[i] = Edge(u, v, w);
}
dfs1(1, 0, 1);
dfs2(1, 1);
for (int i = 1; i < n; i++) {
if (dep[e[i].u] < dep[e[i].v]) swap(e[i].u, e[i].v);
val[id[e[i].u]] = e[i].val;
}
build(1, idx);
char Q[10];
int a, b;
while (scanf("%s", Q)) {
if (Q[0] == 'D') break;
scanf("%d%d", &a, &b);
if (Q[0] == 'Q') printf("%d\n", gao2(a, b));
if (Q[0] == 'C') change(id[e[a].u], b);
if (Q[0] == 'N') gao1(a, b);
}
}
return 0;
}
POJ 3723 Tree(树链剖分)的更多相关文章
- poj 3237 Tree 树链剖分
题目链接:http://poj.org/problem?id=3237 You are given a tree with N nodes. The tree’s nodes are numbered ...
- POJ 3237.Tree -树链剖分(边权)(边值更新、路径边权最值、区间标记)贴个板子备忘
Tree Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 12247 Accepted: 3151 Descriptio ...
- poj 3237 Tree 树链剖分+线段树
Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...
- POJ 3237 Tree (树链剖分 路径剖分 线段树的lazy标记)
题目链接:http://poj.org/problem?id=3237 一棵有边权的树,有3种操作. 树链剖分+线段树lazy标记.lazy为0表示没更新区间或者区间更新了2的倍数次,1表示为更新,每 ...
- POJ3237 Tree 树链剖分 边权
POJ3237 Tree 树链剖分 边权 传送门:http://poj.org/problem?id=3237 题意: n个点的,n-1条边 修改单边边权 将a->b的边权取反 查询a-> ...
- Hdu 5274 Dylans loves tree (树链剖分模板)
Hdu 5274 Dylans loves tree (树链剖分模板) 题目传送门 #include <queue> #include <cmath> #include < ...
- poj 3237 Tree(树链拆分)
题目链接:poj 3237 Tree 题目大意:给定一棵树,三种操作: CHANGE i v:将i节点权值变为v NEGATE a b:将ab路径上全部节点的权值变为相反数 QUERY a b:查询a ...
- Query on a tree——树链剖分整理
树链剖分整理 树链剖分就是把树拆成一系列链,然后用数据结构对链进行维护. 通常的剖分方法是轻重链剖分,所谓轻重链就是对于节点u的所有子结点v,size[v]最大的v与u的边是重边,其它边是轻边,其中s ...
- 【BZOJ-4353】Play with tree 树链剖分
4353: Play with tree Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 31 Solved: 19[Submit][Status][ ...
- SPOJ Query on a tree 树链剖分 水题
You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...
随机推荐
- Vue Element-ui table只展开一行
直接上代码了哈~ <template> <div class="app-content"> <div class="table_expand ...
- POJ 2823 线段树 Or 单调队列
时限12s! 所以我用了线段树的黑暗做法,其实正解是用单调队列来做的. //By SiriusRen #include <cstdio> #include <cstring> ...
- 自学Python七 爬虫实战一
此文承接上文,让我们写一个简简单单的爬虫,循序而渐进不是吗?此次进行的练习是爬取前5页什么值得买网站中的白菜价包邮信息.包括名称,价格,推荐人,时间. 我们所需要做的工作:1.确定URL并获得页面代码 ...
- 复习HTML+CSS(8)
n 普通框架 框架技术:将一个浏览器划分成若干个小窗口,每个小窗口显示一个独立的网页. 框架集合框架页 u 框架集<frameset>:主要用来划分窗口的. u 框架页<fra ...
- php数据库增删改查
首先建立一个数据库db_0808,将db_0808中表格student导入网页. CURD.php <!DOCTYPE html> <html lang="en" ...
- js基础标签用法
js是脚本语言,开始标签<script type="text/javascript">.......结束标签</script>.script通常放在< ...
- ★Java语法(三)——————————变量常量
变量 1.命名规则:变量是标识符,遵循标识符命名规则: 2.作用范围: a 成员变量:作用范围是整个类: package 课上练习; public class 变量 { ; public static ...
- AI:IPPR的数学表示-CNN基本结构分析( Conv层、Pooling层、FCN层/softmax层)
类似于SVM,CNN为代表的DNN方法的边缘参数随着多类和高精度的要求必然增长.比如向量机方法,使用可以映射到无穷维的高斯核,即使进行两类分类,在大数据集上得到高精度,即保持准确率和高精度的双指标,支 ...
- 用一条mysql语句插入多条数据
这篇文章主要介绍了在mysql中使用一条sql语句插入多条数据,效率非常高,但是原理其实很简单,希望对大家有所帮助 假如有一个数据表A: id name title addtime 如果需要插入n条数 ...
- 【剑指Offer】61、序列化二叉树
题目描述: 请实现两个函数,分别用来序列化和反序列化二叉树. 解题思路: 序列化是指将结构化的对象转化为字节流以便在网络上传输或写到磁盘进行永久存储的过程.反序列化是指将字节流转回结构 ...