题目传送门

题目大意:给你一个长度为$n$的自然数序列$a$,定义一段区间的权值为这一段区间里所有数的和,分别输出权值为$[0,\sum a_{i}]$的区间的长度之和

想到了生成函数的话,这道题并不难做。但很多细节真是不太好搞

我们首先预处理出前缀和s,那么一段区间$[l,r]$的权值就是$s_{r}-s_{l-1}$

容易联想到卷积

第一个多项式是 区间右端点的前缀和 作为指数的生成函数,每一项的系数是 右端点的编号之和

第二个多项式是 区间左端点的前缀和 作为指数的生成函数,每一项的系数是 左端点的编号之和

然而区间长度是相减而不是相乘

我们可以把问题转化成 右端点编号$*1$-左端点编号$*1$,求两次卷积再相减即可

然而左端点的前缀和是负数,我们把生成函数整体右移

然而序列里还有$0$的情况

如果序列里出现了连续的$0$,我们发现这部分答案我们无法通过卷积统计

因为按照我们的方法,在多项式对应的相同的位置卷积的话,两次统计的答案就被减掉了

所以连续的$0$对答案的影响通过$O(n)$扫一遍统计

每新加入一个新的$0$,就会多产生一个等差数列的贡献

另外答案比较大,$FFT$需要开$long\;double$

 #include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N1 (1<<18)
#define M1 (N1<<1)
#define il inline
#define dd double
#define ld long double
#define ll long long
using namespace std; int T,n; int gint()
{
int ret=,fh=;char c=getchar();
while(c<''||c>''){if(c=='-')fh=-;c=getchar();}
while(c>=''&&c<=''){ret=ret*+c-'';c=getchar();}
return ret*fh;
} const ld pi=acos(-);
struct cp{
ld x,y;
friend cp operator + (const cp &s1,const cp &s2){ return (cp){s1.x+s2.x,s1.y+s2.y}; }
friend cp operator - (const cp &s1,const cp &s2){ return (cp){s1.x-s2.x,s1.y-s2.y}; }
friend cp operator * (const cp &s1,const cp &s2){ return (cp){s1.x*s2.x-s1.y*s2.y,s1.y*s2.x+s1.x*s2.y}; }
}a[N1],b[N1],c[N1];
int r[N1];
void FFT(cp *s,int len,int type)
{
int i,j,k; cp wn,w,t;
for(i=;i<len;i++) if(i<r[i]) swap(s[i],s[r[i]]);
for(k=;k<=len;k<<=)
{
wn=(cp){cos(pi*2.0*type/k),sin(pi*2.0*type/k)};
for(i=;i<len;i+=k)
{
w=(cp){,};
for(j=;j<(k>>);j++,w=w*wn)
{
t=w*s[i+j+(k>>)];
s[i+j+(k>>)]=s[i+j]-t;
s[i+j]=s[i+j]+t;
}
}
}
}
void FFT_Main(int len)
{
FFT(a,len,); FFT(b,len,);
for(int i=;i<len;i++) c[i]=a[i]*b[i];
FFT(c,len,-);
for(int i=;i<len;i++) c[i].x/=len;
} int v[N1],s[N1];
ll ans[N1]; int main()
{
scanf("%d",&T);
while(T--) { memset(v,,sizeof(v)); memset(s,,sizeof(s)); memset(r,,sizeof(r)); memset(ans,,sizeof(ans));
int i,j,maxn=,len,L,num;
scanf("%d",&n);
for(i=;i<=n;i++) v[i]=gint(), s[i]=s[i-]+v[i], maxn=max(maxn,s[i]);
if(!maxn)
{
for(i=;i<=n;i++)
ans[]+=1ll*(i+)*i/;
printf("%lld\n",ans[]);
continue;
} for(len=,L=;len<maxn+maxn+;len<<=,L++);
for(i=;i<len;i++) r[i]=(r[i>>]>>)|((i&)<<(L-)); memset(a,,sizeof(a)); memset(b,,sizeof(b));
for(i=;i<=n;i++) a[s[i]].x+=i;
for(i=;i<=n;i++) b[-s[i]+maxn].x++;
FFT_Main(len);
for(i=maxn;i<=(maxn<<);i++) ans[i-maxn]=(ll)(c[i].x+0.5); memset(a,,sizeof(a)); memset(b,,sizeof(b));
for(i=;i<=n;i++) a[s[i]].x++;
for(i=;i<=n;i++) b[-s[i]+maxn].x+=i;
FFT_Main(len);
for(i=maxn;i<=(maxn<<);i++) ans[i-maxn]-=(ll)(c[i].x+0.5); for(i=,num=;i<=n;i++)
if(!v[i]){ num++; ans[]+=1ll*(num+)*(num)/2ll; }
else{ num=; }
for(i=;i<=maxn;i++) printf("%lld\n",ans[i]);
//puts("");
}
return ; }

HDU 5307 He is Flying (生成函数+FFT)的更多相关文章

  1. FFT(快速傅里叶变换):HDU 5307 He is Flying

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA8IAAAPeCAIAAABInTQaAAAgAElEQVR4nOy9fZReVXk3vP8ia+HqCy

  2. HDU 5307 He is Flying ——FFT

    卷积的妙用,显然我们可以求出所有符合条件的右端点的和,然后减去左端点的和. 就是最后的答案.然后做一次前缀和,然后就变成了统计差是一个定值的情况. 令$A(s[i])++$ $B(s[i])+=i$ ...

  3. hdu 1402 A * B Problem Plus FFT

    /* hdu 1402 A * B Problem Plus FFT 这是我的第二道FFT的题 第一题是完全照着别人的代码敲出来的,也不明白是什么意思 这个代码是在前一题的基础上改的 做完这个题,我才 ...

  4. loj6570 毛毛虫计数(生成函数FFT)

    link 巨佬olinr的题解 <-- olinr很强 考虑生成函数 考虑直径上点数>=4的毛毛虫的直径,考虑直径中间那些节点以及他上面挂的那些点的EGF \(A(x)=\sum_{i\g ...

  5. HDU - 5307 :He is Flying (分治+FFT)(非正解)

    JRY wants to drag racing along a long road. There are nn sections on the road, the ii-th section has ...

  6. HDU 5515 Game of Flying Circus 二分

    Game of Flying Circus Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem ...

  7. 挑选队友 (生成函数 + FFT + 分治)

    链接:https://www.nowcoder.com/acm/contest/133/D来源:牛客网 题目描述 Applese打开了m个QQ群,向群友们发出了组队的邀请.作为网红选手,Applese ...

  8. 【BZOJ3771】Triple 生成函数 FFT 容斥原理

    题目大意 有\(n\)把斧头,不同斧头的价值都不同且都是\([0,m]\)的整数.你可以选\(1\)~\(3\)把斧头,总价值为这三把斧头的价值之和.请你对于每种可能的总价值,求出有多少种选择方案. ...

  9. HDU - 1402 A * B Problem Plus FFT裸题

    http://acm.hdu.edu.cn/showproblem.php?pid=1402 题意: 求$a*b$ 但是$a$和$b$的范围可以达到 $1e50000$ 题解: 显然...用字符串模拟 ...

随机推荐

  1. 洛谷—— P1041 传染病控制

    https://www.luogu.org/problem/show?pid=1041 题目背景 近来,一种新的传染病肆虐全球.蓬莱国也发现了零星感染者,为防止该病在蓬莱国大范围流行,该国政府决定不惜 ...

  2. Java EE: XML Schemas for Java EE Deployment Descriptors(Java Web的web.xml头web-app标签上的XML模式)

    继上几篇文章 http://www.cnblogs.com/EasonJim/p/6221952.html http://www.cnblogs.com/EasonJim/p/6959120.html ...

  3. HDU 1466

    经典DP,这样的递推确实有点难. 把所有直线分成两组,可以知道 m条直线的交点方案数 =(m-r)条平行线与r条直线交叉的交点数  + r条直线本身的交点方案 亦就是  =(m-r)*r+r条之间本身 ...

  4. Effective C++ Item 28 避免返回对象内部数据的引用或指针

    本文为senlie原创.转载请保留此地址:http://blog.csdn.net/zhengsenlie Item 31 经验:避免返回handles(包含 references.指针.迭代器)指向 ...

  5. 【JMeter连接SQLServer】採用window鉴权方式连接(原创)

    大家都知道Jmeter能够连接各种数据库.这方面我也不多说了,假设你还不知道怎么连接的话.能够參看我看的另外一篇博文.这边有具体的介绍 http://blog.csdn.net/lzqinfen/ar ...

  6. 《从零開始学Swift》学习笔记(Day 56)—— Swift编码规范之命名规范

    原创文章,欢迎转载.转载请注明:关东升的博客 程序代码中到处都是自定义的名字,取一个有样而且符合规范的名字非常重要. 命名方法非常多,可是比較有名的,广泛接受命名法有: 匈牙利命名,一般仅仅是命名变量 ...

  7. LeetCode总结 -- 树的遍历篇

    遍历树的数据结构中最常见的操作. 能够说大部分关于树的题目都是环绕遍历进行变体来解决的. 一般来说面试中遇到树的题目是用递归来解决的, 只是假设直接考察遍历. 那么一般递归的解法就过于简单了. 面试官 ...

  8. Truck History --hdoj

    Truck History Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) Tota ...

  9. 最详细的CentOS 6与7对比(二):服务管理对比

    本主题将从3个角度进行对比 常见设置(CentOS 6 vs CentOS 7) 服务管理(Sysvinit vs Upstart vs Systemd) 性能测试(cpu/mem/io/oltp) ...

  10. HDU 3018 一笔画问题

    题意:给你一个图 判断最少用几笔把这个图画出来(画过的边不能重新画) 思路: 并查集+欧拉回路 仔细想一想. 在一个强连通分量中 所有度为奇数的点之和÷2就是要画的笔画数 Now question : ...