caioj 1114 树形动态规划(TreeDP)3.0:多叉苹果树【scy改编ural1018二叉苹果树】
一波树上背包秒杀……
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 312;
int f[MAXN][MAXN], cnt[MAXN], n, k;
struct node{ int v, w; };
vector<node> g[MAXN];
void dfs(int u, int fa)
{
REP(i, 0, g[u].size())
{
int v = g[u][i].v, w = g[u][i].w;
if(v == fa) continue;
dfs(v, u);
cnt[u] += cnt[v];
for(int j = cnt[u]; j >= 1; j--)
REP(k, 1, min(cnt[v], j - 1) + 1)
f[u][j] = max(f[u][j], f[u][j-k] + f[v][k] + w);
}
}
int main()
{
scanf("%d%d", &n, &k);
REP(i, 1, n)
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
g[u].push_back(node{v, w});
g[v].push_back(node{u, w});
cnt[i] = 1;
}
cnt[n] = 1;
dfs(1, -1);
printf("%d\n", f[1][k + 1]);
return 0;
}
caioj 1114 树形动态规划(TreeDP)3.0:多叉苹果树【scy改编ural1018二叉苹果树】的更多相关文章
- 洛谷 P1273 有线电视网 && caioj 1109 树形动态规划(TreeDP)4:比赛转播(树上分组背包总结)
从这篇博客往前到二叉苹果树都可以用分组背包做 这依赖性的问题,都可以用于这道题类似的方法来做 表示以i为根的树中取j个节点所能得的最大价值 那么每一个子树可以看成一个组,每个组里面取一个节点,两个节点 ...
- caioj 1111 树形动态规划(TreeDP)6: 皇宫看守 (状态设计)
这道题的难点在于状态怎么设计 这道题要求全部都是安全的,所以我们做的时候自底向上每一个结点都要是安全的 结合前一题当前结点选和不选,我们可以分出四种情况出来 选 安全 选 不安全 不选 安全 不选 不 ...
- caioj 1112 树形动态规划(TreeDP)7:战略游戏
这道题和上一道题非常相似 这道题是看边,上一道是看点. 但是状态定义不同 看边的话没有不放不安全这种状态 因为当前结点的父亲无法让这颗子树没有看到的边看到 所以这种状态不存在 而上一道题存在不放不安全 ...
- 洛谷 P2014 选课 && caioj 1108 树形动态规划(TreeDP)3:选课
这里的先后关系可以看成节点和父亲的关系 在树里面,没有父亲肯定就没有节点 所以我们可以先修的看作父亲,后修的看作节点 所以这是一颗树 这题和上一道题比较相似 都是求树上最大点权和问题 但这道题是多叉树 ...
- caioj 1106 树形动态规划(TreeDP)1:加分二叉树
解这道题的前提是非常熟悉中序遍历的方式 我就是因为不熟悉而没有做出来 中序遍历是5 7 1 2 10的话,如果1是根节点 那么5 7 1就是1的左子树,2, 10就是右子树 这就有点中链式dp的味道了 ...
- 蓝桥杯 ALGO-4 结点选择 (树形动态规划)
问题描述 有一棵 n 个节点的树,树上每个节点都有一个正整数权值.如果一个点被选择了,那么在树上和它相邻的点都不能被选择.求选出的点的权值和最大是多少? 输入格式 第一行包含一个整数 n . 接下来的 ...
- 【ACM/ICPC2013】树形动态规划专题
前言:按照计划,昨天应该是完成树形DP7题和二分图.最大流基础专题,但是由于我智商实在拙计,一直在理解树形DP的思想,所以第二个专题只能顺延到今天了.但是昨天把树形DP弄了个5成懂我是很高兴的!下面我 ...
- 树形动态规划(树状DP)小结
树状动态规划定义 之所以这样命名树规,是因为树形DP的这一特殊性:没有环,dfs是不会重复,而且具有明显而又严格的层数关系.利用这一特性,我们可以很清晰地根据题目写出一个在树(型结构)上的记忆化搜索的 ...
- 树形动态规划(树形DP)入门问题—初探 & 训练
树形DP入门 poj 2342 Anniversary party 先来个题入门一下~ 题意: 某公司要举办一次晚会,但是为了使得晚会的气氛更加活跃,每个参加晚会的人都不希望在晚会中见到他的直接上 ...
随机推荐
- CF 689D - Friends and Subsequences
689D - Friends and Subsequences 题意: 大致跟之前题目一样,用ST表维护a[]区间max,b[]区间min,找出多少对(l,r)使得maxa(l,r) == minb( ...
- JavaScript高级程序设计部分笔记
1.JavaScript由三个不同的部分组成:ECMAScript(核心).DOM(文档对象模型).BOM(浏览器对象模型). 2.数据的引用类型 Object类型 Array类型 Data类型 Re ...
- 7、A Design of Group Recommendation Mechanism Considering Opportunity Cost and Personal Activity Using Spark Framework---使用Spark框架的基于机会成本以及个人活动群组推荐机制
来源EDB2018---EDB 一.摘要: 组推荐是将一种项目(例如产品.服务)推荐给由多个成员组成的组的方法. 最小痛苦法(least Misery)是一种具有代表性的群体推荐方法,其能够推荐考虑群 ...
- python的迭代器、生成器、三元运算、列表解析、生成器表达式
一 迭代的概念 迭代是Python最强大的功能之一,是访问集合元素的一种方式. 迭代器是一个可以记住遍历的位置的对象. 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前 ...
- 【HNOI】合唱队
[HNOI]合唱队 题意 对于一个初始序列,保证两两不同,通过一些变换得到目标序列: 第一个值直接插入空的当前队列 对于从第二个值开始的每个值 如果原序列中 $ a[i] $,若 $ a[i]> ...
- [JZOJ]100047. 【NOIP2017提高A组模拟7.14】基因变异
21 世纪是生物学的世纪,以遗传与进化为代表的现代生物理论越来越多的 进入了我们的视野. 如同大家所熟知的,基因是遗传因子,它记录了生命的基本构造和性能. 因此生物进化与基因的变异息息相关,考察基因变 ...
- 树形dp复习 树上依赖背包问题
选课 今天又看了一下这道题,竟然AC不了了 自己的学习效率有点低下 要明白本质,搞透彻 #include<bits/stdc++.h> #define REP(i, a, b) for(r ...
- Fedora 17 无线网卡配置笔记
转载:http://www.psichen.com/fedora-17-wifi/ 安装并更新完F17后,在网络选项中没有出现无线网,需要自己安装无线网卡驱动.而F17中默认网卡名称从以前的”eth0 ...
- spark源代码action系列-foreach与foreachPartition
RDD.foreachPartition/foreach的操作 在这个action的操作中: 这两个action主要用于对每一个partition中的iterator时行迭代的处理.通过用户传入的fu ...
- jQuery——map()函数以及它的java实现
map()函数小简单介绍 map()函数一直都是我觉得比較有用的函数之中的一个,为什么这么说呢? 先来考虑一下.你是否碰到过下面场景:须要遍历一组对象取出每一个对象的某个属性(比方id)而且用分隔符隔 ...