https://www.luogu.org/problem/show?pid=2015

题目描述

有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点)

这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1。

我们用一根树枝两端连接的结点的编号来描述一根树枝的位置。下面是一颗有4个树枝的树

2 5 \ / 3 4 \ / 1 现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。

给定需要保留的树枝数量,求出最多能留住多少苹果。

输入输出格式

输入格式:

第1行2个数,N和Q(1<=Q<= N,1<N<=100)。

N表示树的结点数,Q表示要保留的树枝数量。接下来N-1行描述树枝的信息。

每行3个整数,前两个是它连接的结点的编号。第3个数是这根树枝上苹果的数量。

每根树枝上的苹果不超过30000个。

输出格式:

一个数,最多能留住的苹果的数量。

输入输出样例

输入样例#1:

5 2
1 3 1
1 4 10
2 3 20
3 5 20
输出样例#1:

21

f[i][j]表示节点i保留j个枝条能得到的最多苹果数
 #include <cstdio>

 inline void read(int &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
}
const int N();
int head[N],sumedge;
struct Edge {
int v,w,next;
Edge(int v=,int next=,int w=):
v(v),next(next),w(w){}
}edge[N<<];
inline void ins(int u,int v,int w)
{
edge[++sumedge]=Edge(v,head[u],w);
head[u]=sumedge;
edge[++sumedge]=Edge(u,head[v],w);
head[v]=sumedge;
} #define min(a,b) (a<b?a:b)
#define max(a,b) (a>b?a:b) int n,q,f[N][N];
int DFS(int u,int fa)
{
int sum=;
for(int v,i=head[u]; i; i=edge[i].next)
{
v=edge[i].v;
if(v==fa) continue;
sum+=DFS(v,u)+;
for(int j=min(sum,q); j; --j)
for(int k=; k<j; ++k)
f[u][j]=max(f[u][j],f[u][j-k-]+f[v][k]+edge[i].w);
}
return sum;
} int Presist()
{
read(n),read(q);
for(int u,v,w,i=; i<n; ++i)
read(u),read(v),read(w),ins(u,v,w);
DFS(,);
printf("%d\n",f[][q]);
return ;
} int Aptal=Presist();
int main(){;}

洛谷—— P2015 二叉苹果树的更多相关文章

  1. 洛谷 P2015 二叉苹果树 (树上背包)

    洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(d ...

  2. 洛谷p2015二叉苹果树&yzoj1856多叉苹果树题解

    二叉 多叉 有一棵苹果树,如果树枝有分叉,可以是分多叉,分叉数k>=0(就是说儿子的结点数大于等于0)这棵树共有N个结点(叶子点或者树枝分叉点),编号为1~N,树根编号一定是1.我们用一根树枝两 ...

  3. 洛谷 P2015 二叉苹果树(codevs5565) 树形dp入门

    dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿 ...

  4. 洛谷 P2015 二叉苹果树 && caioj1107 树形动态规划(TreeDP)2:二叉苹果树

    这道题一开始是按照caioj上面的方法写的 (1)存储二叉树用结构体,记录左儿子和右儿子 (2)把边上的权值转化到点上,离根远的点上 (3)用记忆化搜索,枚举左右节点分别有多少个点,去递归 这种写法有 ...

  5. 洛谷P2015 二叉苹果树

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...

  6. 洛谷 P2015 二叉苹果树

    老规矩,先放题面 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端 ...

  7. 洛谷P2015 二叉苹果树(树状dp)

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...

  8. 洛谷P2015二叉苹果树

    传送门啦 树形 $ dp $ 入门题,学树形 $ dp $ 的话,可以考虑先做这个题. $ f[i][j] $ 表示在 $ i $ 这棵子树中选 $ j $ 个苹果的最大价值. include #in ...

  9. 洛谷 P2015 二叉苹果树 题解

    题面 裸的树上背包: 设f[u][i]表示在以u为子树的树种选择i条边的最大值,则:f[u][i]=max(f[u][i],f[u][i-j-1]+f[v][k]+u到v的边权); #include ...

随机推荐

  1. eclipse的快捷键---调试

    1:查看类或接口的方法 Ctrl+T 2:debug调试查看信息 Ctrl+Shift+i 3:debug调试快捷键 (1):F11好像是重新运行debug. (2):F8直接输出结果.(3):F5单 ...

  2. codevs1004四子连棋

    1004 四子连棋  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold     题目描述 Description 在一个4*4的棋盘上摆放了14颗棋子,其中有7颗白 ...

  3. [Apple开发者帐户帮助]六、配置应用服务(6)创建电子钱包标识符和证书

    电子钱包提供称为通行证的信息的数字表示- 例如优惠券,演出门票或登机牌 - 允许用户兑换真实世界的产品或服务.您可以通过多种方式使用电子钱包: 选项1:请求,分发和更新通行证 首先注册通行证类型标识符 ...

  4. [Swift通天遁地]八、媒体与动画-(6)使用开源类库快速实现滑入动画

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  5. web自动化测试—selenium操作游览器属性

    # coding=utf-8'''web游览器属性: 页面最大化 maximize_window() 获取当前页面地址 current_url 代码 page_source title title 后 ...

  6. jQuery获取Select元素

    jQuery获取Select元素,并选择的Text和Value: 1. $("#select_id").change(function(){//code...});   //为Se ...

  7. easyui datagrid 页面详细使用

    //加载数据workflowName    onloadmyCgxList: function (id) { if (id != null && id != "" ...

  8. Codeforces Round 411 Div.2 题解

    A Fake NP standard input/output s, MB Submit Add to favourites x3673 B -palindrome standard input/ou ...

  9. 涨知识III - 百度2016校园招聘——移动软件研发工程师

    1.列关于线程调度的叙述中,错误的是(). 正确答案 :BE A调用线程的sleep()方法,可以使比当前线程优先级低的线程获得运行机会 B调用线程的yeild()方法,只会使与当前线程相同优先级的线 ...

  10. 【1】Jdk1.8中的HashMap实现原理

    HashMap概述 HashMap是基于哈希表的Map接口的非同步实现.此实现提供所有可选的映射操作,并允许使用null值和null键.此类不保证映射的顺序,特别是它不保证该顺序恒久不变. 内部实现 ...