1087: [SCOI2005]互不侵犯King

Time Limit: 10 Sec  Memory Limit: 162 MB

Submit: 2405  Solved: 1413

[Submit][Status][Discuss]

Description

在N×N的棋盘里面放K个国王,使他们互不攻击。共同拥有多少种摆放方案。

国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。

Input

仅仅有一行,包括两个数N。K ( 1 <=N <=9, 0 <= K <= N * N)

Output

方案数。

Sample Input

3 2

Sample Output

16

HINT

Source

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
using namespace std;
int n,m,all,cnt[520];
ll ans,f[10][100][520];
bool p[520],g[520][520];
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline bool check(int x,int y)
{
return ((x&y)==0)&&((x&(y>>1))==0)&&((y&(x>>1))==0);
}
inline void pre()
{
int s=0;
F(i,0,all) if ((i&(i>>1))==0)
{
s=0;
for(int x=i;x;x>>=1) s+=(x&1);
cnt[i]=s;
p[i]=true;
}
F(i,0,all) if (p[i]) F(j,0,all) if (p[j]) g[i][j]=check(i,j);
}
int main()
{
n=read();m=read();
all=(1<<n)-1;
pre();
F(i,0,all) if (p[i]) f[1][cnt[i]][i]=1;
F(i,1,n-1) F(j,0,all) if (p[j]) F(k,0,all) if (p[k]&&g[j][k])
F(l,cnt[j],m-cnt[k]) f[i+1][l+cnt[k]][k]+=f[i][l][j];
F(i,0,all) ans+=f[n][m][i];
printf("%lld\n",ans);
}

bzoj1087【SCOI2005】互不侵犯King的更多相关文章

  1. BZOJ1087 SCOI2005 互不侵犯King 【状压DP】

    BZOJ1087 SCOI2005 互不侵犯King Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附 ...

  2. [bzoj1087][scoi2005]互不侵犯king

    题目大意 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. 思路 首先,搜索可以放弃,因为这是一 ...

  3. 状压入门--bzoj1087: [SCOI2005]互不侵犯King【状压dp】

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行, ...

  4. [BZOJ1087][SCOI2005]互不侵犯King解题报告|状压DP

    在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 好像若干月前非常Naive地去写过DFS... ...

  5. [BZOJ1087] [SCOI2005] 互不侵犯King (状压dp)

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...

  6. BZOJ1087 [SCOI2005]互不侵犯King 状态压缩动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1087 题意概括 在n*n的棋盘上面放k个国王,使得他们互相无法攻击,问有多少种摆法. 题解 dp[ ...

  7. bzoj1087: [SCOI2005]互不侵犯King (codevs2451) 状压dp

    唔...今天学了状压就练练手... 点我看题 这题的话,我感觉算是入门题了QAQ... 然而我还是想了好久... 大致自己推出了方程,但是一直挂,调了很久选择了题解 坚持不懈的努力的调代码. 然后发现 ...

  8. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  9. SCOI2005互不侵犯King

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1499  Solved: 872[Submit][S ...

  10. 洛谷1377 M国王 (SCOI2005互不侵犯King)

    洛谷1377 M国王 (SCOI2005互不侵犯King) 本题地址:http://www.luogu.org/problem/show?pid=1377 题目描述 天天都是n皇后,多么无聊啊.我们来 ...

随机推荐

  1. MFC学习篇(一):用OpenCV显示视频

    首先是一些基础的步骤,如建立MFC应用,添加按钮等,博主主要参考了下面这篇文章,其中的前32步都是用OpenCV显示图片和视频所必须的,即通用的.由于LZ原来有配置OpenCV的基础,所以配制还是比较 ...

  2. Flume OG 与 Flume NG 的对比

    Flume OG 与 Flume NG 的对比 1.Flume OG Flume OG:Flume original generation 即Flume 0.9.x版本,它由agent.collect ...

  3. C#学习-图片的处理

    1.在图片上加防伪标记 private void btnAddString_Click(object sender, EventArgs e) { //以流的方式,获取一张图片 using (File ...

  4. Boost Bimap示例

    #include <string> #include <iostream> #include <boost/bimap.hpp> template< clas ...

  5. 关于onActivityResult方法不执行的问题汇总

    我们不生产代码, 只是大自然的搬运工.  首先致谢: https://blog.csdn.net/sbvfhp/article/details/26858441 场景描述: 在A activity(由 ...

  6. [Windows Server 2008] 手工创建安全网站

    ★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频.★ 本节我们将带领大家:手工创建安全站 ...

  7. JAVA和JVM运行原理揭秘

    这里和大家简单分享一下JAVA和JVM运行的原理,Java语言写的源程序通过Java编译器,编译成与平台无关的‘字节码程序’(.class文件,也就是0,1二进制程序),然后在OS之上的Java解释器 ...

  8. HDU_1023_Train Problem II_卡特兰数

    Train Problem II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. CAD读取属性块

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3 ...

  10. C语言实现截屏

    实现手机控制电脑执行部分功能需要获取桌面状态,在网上找的一段截屏代码 /** * GDI 截屏函数 * 参数 hwnd 要截屏的窗口句柄 * 参数 dirPath 截图存放目录 * 参数 filena ...