基于python的数学建模---运输问题
代码
import pulp
import numpy as np
from pprint import pprint def transport_problem(costs, x_max, y_max):
row = len(costs)
col = len(costs[0])
prob = pulp.LpProblem('Transportation Problem', sense=pulp.LpMaximize)
var = [[pulp.LpVariable(f'x{i}{j}', lowBound=0, cat=pulp.LpInteger)
for j in range(col)] for i in range(row)]
flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]#定义一个x,x若为列表形式则执行for循环,flatten将多维数组转换为一维数组
prob += pulp.lpDot(flatten(var), costs.flatten())#costs是numpy定义的,有自己的函数
for i in range(row):
prob += (pulp.lpSum(var[i])) <= x_max[i]
for j in range(col):
prob += (pulp.lpSum(var[i][j] for i in range(row)) <= y_max[j])
prob.solve()
return {'objective': pulp.value(prob.objective), 'var': [[pulp.value(var[i][j]) for j in range(col)] for
i in range(row)]} if __name__ == '__main__':
costs = np.array([[500, 550, 630, 1000, 800, 700],
[800, 700, 600, 950, 900, 930],
[1000, 960, 840, 650, 600, 700],
[1200, 1040, 980, 860, 880, 780]])
max_plant = [76, 88, 96, 40]
max_cultivation = [42, 56, 44, 39, 60, 59]
res = transport_problem(costs, max_plant, max_cultivation)
print(f'最大值为{res["objective"]}')
print('各变量的取值为: ')
pprint(res['var'])
最大值为284230.0
各变量的取值为:
[[0.0, 0.0, 6.0, 39.0, 31.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 29.0, 59.0],
[2.0, 56.0, 38.0, 0.0, 0.0, 0.0],
[40.0, 0.0, 0.0, 0.0, 0.0, 0.0]]
基于python的数学建模---运输问题的更多相关文章
- 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)
函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...
- Python数学建模-01.新手必读
Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...
- Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评
新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...
- Python小白的数学建模课-19.网络流优化问题
流在生活中十分常见,例如交通系统中的人流.车流.物流,供水管网中的水流,金融系统中的现金流,网络中的信息流.网络流优化问题是基本的网络优化问题,应用非常广泛. 网络流优化问题最重要的指标是边的成本和容 ...
- 【数学建模】线性规划各种问题的Python调包方法
关键词:Python.调包.线性规划.指派问题.运输问题.pulp.混合整数线性规划(MILP) 注:此文章是线性规划的调包实现,具体步骤原理请搜索具体解法. 本文章的各个问题可能会采用多种调用方 ...
- Python数学建模-02.数据导入
数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...
- Python小白的数学建模课-A1.国赛赛题类型分析
分析赛题类型,才能有的放矢. 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. 1. 数模竞赛国赛 A题类型分析 年份 题目 要 ...
- Python小白的数学建模课-07 选址问题
选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...
- Python小白的数学建模课-09 微分方程模型
小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...
- Python小白的数学建模课-B5. 新冠疫情 SEIR模型
传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...
随机推荐
- 《!--suppress ALL --> 在Android XML 文件中的用途是什么?
<!--suppress ALL --> 在Android XML 文件中的用途是什么? 警告一次又一次地出现在谷歌地图的 XML 文件中,但是当我使用时,所有警告都被禁用.那么压制所有评 ...
- C++ | unordered_map 自定义键类型
C++ unordered_map 使用自定义类作为键类型 C++ unordered_map using a custom class type as the key
- 4、StringBuilder类
StringBuilder类 一个可变的字符序列,此类提供一个与StringBuffer 兼容的 API,但不保证同步(StringBuilder 不是线程安全). 该类被设计用作 StringBuf ...
- Apache开启目录浏览功能的正确姿势
部分代码是抄的网友的,哪儿抄的忘了,我是自己修改了点,并非我本人原创,觉得侵权联系我,立马删 在宝塔面板中,打开网站的设置,在配置文件那里添加如下内容 Directory "文件绝对路径&q ...
- Elasticsearch:跨集群搜索 Cross-cluster search (CCS)
转载自:https://blog.csdn.net/UbuntuTouch/article/details/104588232 跨集群搜索(cross-cluster search)使您可以针对一个或 ...
- mvn clean package 、mvn clean install、mvn clean deploy的区别与联系
使用的时候首选:mvn clean package mvn clean package依次执行了clean.resources.compile.testResources.testCompile.te ...
- Alertmanager篇
报一直是整个监控系统中的重要组成部分,Prometheus监控系统中,采集与警报是分离的.警报规则在 Prometheus 定义,警报规则触发以后,才会将信息转发到给独立的组件 Alertmanage ...
- 从应用访问Pod元数据-DownwardApi的应用
对于某些需要调度之后才能知道的数据,比如 pod 的 ip,主机名,或者 pod 自身的名称等等,k8s 依旧很贴心的提供了 Downward API 的方式来获取此类数据,并且可以通过环境变量或者文 ...
- day44-反射03
Java反射03 3.通过反射获取类的结构信息 3.1java.lang.Class类 getName:获取全类名 getSimpleName:获取简单类名 getFields:获取所有public修 ...
- UVA12186 工人的请愿书 Another Crisis (树形DP)
dp[i]表示要让i向上级发请愿书,最少需要多少个工人递交请愿书,因为要取前T%最小的,所以还要将i的子节点排序(这里用vector实现),取前c个最小的作为dp[i]的值. 这里用dfs可以省去dp ...