对于类似构造方案的题目,先确定其中一些关键位置的方案,然后看是否能较为简单地推出其他位置的方案。

一个长度为 \(n\) 的序列,满足

\[a_1\le-a_4\le a_7\le-a_{10}\le\cdots\\
a_2\le-a_5\le a_8\le-a_{11}\le\cdots\\
a_3\le-a_6\le a_9\le-a_{12}\le\cdots
\]

有 \(q\) 次询问,每次给出 \(l,r\),问通过 \(+1,-1\) 操作使得区间 \([l,r]\) 满足 \(a_i=a_{i-1}+a_{i+1}\) 的最小代价。

\(n,q\le 10^5\)


对于类似构造方案的题目,先将大部分位置以相对粗糙的方式调为合法,此时最后几个位置限制会增多些,这时候再精细讨论。

给定两个长为 \(n(n>5)\) 的字符串 \(S,T\),字符集是 \(\{R,W,Y\}。\)

令 \(L_i=i-1,R_i=i+1\) ,特别的,\(L_1=n,R_n=1\)。

如果 \(S_{L_i}\neq S_{R_i}\) ,那么你可以自由修改 \(S_i\)。

求一种方案使得 \(S=T\)。


对于题目贡献是 \(\frac{x}{y}\) 这种形式,可以看成斜率,维护凸包来处理。

一个长为 \(n\) 的序列,区间 \([l,r]\) 的贡献是 \(\frac{\sum_{i=l}^r x_i}{r-l}\),\(q\) 个询问,每次给出 \(l,r\),为该区间贡献最大的子区间。

\(n\le 10^5,q\le3\times10^4\)


对于题目贡献是 \(\frac{x}{y}\) 这种性质,可以通过假定答案,从而实现移项去掉分数,然后 check 是否能达到。

有一张点数为 \(n\) 的完全图,从中选 \(n\) 条边 \((x,y)\),要求每个点作为 \(x,y\) 各恰好一次,令 \(\frac{\sum a_{x,y}}{\sum b_{x,y}}\) 最大。


对于要在若干对点之间连线,按距离算贡献的题目,一种设状态的方式是当前还有多少线悬在空中,也是一种提前算费用

数轴上有 \(n\) 个红点,\(m\) 个蓝点,要求每个点至少和一个异色点连线,代价是距离,求最小代价。

\(n,m\le10^5\)


对于构造类题目,有 \(x\) 种颜色,\(y\) 的限制,一种满足限制的构造技巧是 \(y^x>n\)

一个 \(n\) 个点,\(m\) 条边的 DAG,用三种颜色给 \(m\) 条边染色,要求连续的同色边不能到 \(42\) 条。

\(n\le5\times10^4,m\le2\times10^5\)


对于要求字符串本质不同的题目,都可以丢到相应的自动机上。

求本质不同回文子序列。

\(n\le5000\)


对于多串的匹配相关题目,往往要依靠 AC 自动机去重,然后来实现。

给定正整数 \(m\) 以及 \(n\) 个 \(01\) 串 \(s_1\sim s_n\),你需要求出长度为 \(2m\) 的反对称的包含这 \(n\) 个 \(01\) 串作为子串的 \(01\) 串的个数。对 \(998244353\) 取模。

一个 \(01\) 串 \(s\) 是反对称的当且仅当它对于 \(1\le i\le |s|\) 都满足 \(s[i]≠s[|s|-i+1]\)。

\(n\le6,|s|\le100,m\le500\)


对于线段树每个节点都要倍增,因此复杂度过高,可以将线段树补成每个节点都是 \(2^n\),就只要倍增一次。

一开始先给出 \(n\) 个字符串 \(T_i\),再给出字符串 \(S\),然后进行操作。

一共操作 \(Q\) 次,分为两种:

1 l r str:把 \(S\) 的区间 \([l,r]\) 的字符串修改为字符串 \(str\) 不停重复的结果。

2 l r:询问 \(T_1\sim T_n\) 在 \(S\) 的区间 \([l,r]\) 中一共出现了几次。

注意每次修改对之后的操作是有影响的。

保证所有 \(T_i\) 插入一个字典树后,字典树大小不超过 \(50\).

\(n≤50,Q≤100000,|S|≤100000\),所有修改操作的 \(str\) 的长度总和不超过 \(|S|\)。


对于字典序大小相关的题目,考虑第一个不同的位置来比较字典序。

给定一个 \(n\) 个元素的 \(k\) 叉堆,权值是一个排列,问在所有的权值是一个排列的 \(k\) 叉堆中,给出的堆的字典序排名。

\(n,k\le 3000\)


对于维护一段合法前缀类的问题,可以用线段树二分。

给出一个 \(n\) 个点的树,权值为 \(0\sim n-1\) 的一个排列,问最大路径 \(\rm{mex}\) 的多少。

每次修改是交换两个点的权值,多次询问。

\(n\le2\times10^5\)


在 \([1,V]\) 中随机选 \(n\) 个数,第 \(k\) 小的期望大小是 \(\frac{k}{n}V\).

给出 \(n\) 个点,\(m\) 条边的 DAG,问每个点能到几个点。

\(n,m\le10^6\).


对于排序不影响答案的题目,不妨先排序。

给出若干正方体堆砌的主视图和左视图,求所有方案的正方体个数之和。

\(n,m\le5\times10^5\)


需要二分图染色的结果,建图只要连通即可。

给一个排列做双栈排序,判断是否可行,并输出字典序最小的方案。

\(n\le 10^5\)。


对于每组选一个数,不同组贡献为乘积的数,可以用类似生成函数的方式表示+维护。

你有 \(n\) 个正整数,第 \(i\) 个在集合 \(B_i\) 中均匀独立随机。

然后按照结果最大的顺序把 \(a_1\sim a_n\) 拼起来,求最大结果的期望值。

\(n\le2333,\sum|B_i|\le23333,|S|\le1919810\).


求形如 \(\sum a_i^2\) 类的东西,可以一对一对考虑。

黑盒子里有 \(nk\) 个白球,重复 \(n\) 次操作:放入 \(k\) 个黑球,取出 \(2k\) 个球.

记 \(E(i)\) 表示第 \(i\) 次操作期望意义下取出的黑球数,求:\(\sum E(i^2)\)

\(n\le 10^6, k\le 100\).


两个图叠加后,重心位于两个原重心的路径上。

树的 dfs 序列的带权重心一定在树的带权重心的子树中。

给你一棵 \(n\) 个点的树,支持子树加和链加,询问每次修改后的带权重心。

\(n,q\le 3\times 10^5\)

[总结] 零散的 tricks的更多相关文章

  1. Android零散

    2016-03-13 Android零散 ListView中嵌套GridView 要实现分组列表这样的效果:点击ListView中的分组名称,即展开此分组显示其包含的项目.使用ExpandableLi ...

  2. testng 教程之使用参数的一些tricks配合使用reportng

    前两次的总结:testng annotation生命周期 http://www.cnblogs.com/tobecrazy/p/4579414.html testng.xml的使用和基本配置http: ...

  3. (转) How to Train a GAN? Tips and tricks to make GANs work

    How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...

  4. Matlab tips and tricks

    matlab tips and tricks and ... page overview: I created this page as a vectorization helper but it g ...

  5. LoadRunner AJAX TruClient协议Tips and Tricks

    LoadRunner AJAX TruClient协议Tips and Trickshttp://automationqa.com/forum.php?mod=viewthread&tid=2 ...

  6. 【翻译】C# Tips & Tricks: Weak References - When and How to Use Them

    原文:C# Tips & Tricks: Weak References - When and How to Use Them Sometimes you have an object whi ...

  7. 零散知识记录-一个MQ问题

    [背景]我有一项零散工作:维护大部门的一台测试公用MQ服务器.当大部分MQ被建立起来,编写了维护手册,大家都按照规程来后,就基本上没有再动过它了.周五有同学跟我反映登录不进去了,周日花了1个小时来解决 ...

  8. 神经网络训练中的Tricks之高效BP(反向传播算法)

    神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) zouxy09@qq.com http://blog.csdn.net/zouxy09 ...

  9. iOS网络相关零散知识总结

    iOS网络相关零散知识总结 1. URL和HTTP知识 (1) URL的全称是Uniform Resource Locator(统一资源定位符). URL的基本格式 = 协议://主机地址/路径   ...

随机推荐

  1. 说说for循环的两种写法

    for循环 执行多次,条件写在()里,语法形式: 1 2 3 for(计数器变量;条件;计数器增减){ // 将要执行的代码 } 示例: 1 2 3 for (int i = 0; i < 5; ...

  2. @Required 注解 ?

    这个注解表明 bean 的属性必须在配置的时候设置,通过一个 bean 定义的显式的 属性值或通过自动装配,若@Required 注解的 bean 属性未被设置,容器将抛出 BeanInitializ ...

  3. 并发包中automic类的原理

    提到同步,我们一般首先想到的是lock,synchronized,但java中有一套更加轻量级的同步方式即atomic类.java的并发原子包里面提供了很多可以进行原子操作的类,比如: AtomicI ...

  4. kafka生产者网络层总结

    1 层次结构 负责进行网络IO请求的是NetworkClient,主要层次结构如下 ClusterConnectionStates报存了每个节点的状态,以node为key,以node的状态为value ...

  5. 单片,SOA 和微服务架构有什么区别?

    单片架构类似于大容器,其中应用程序的所有软件组件组装在一起并紧密 封装.第一个面向服务的架构是一种相互通信服务的集合.通信可以涉及简单的数 据传递,也可以涉及两个或多个协调某些活动的服务.微服务架构是 ...

  6. jsp报错问题之“使用jstl的c标签choose报错Illegal text inside "c:choose" tag问题”

    一.报错 [bessky_it][ERROR][2022-03-25 17:19:07] | PLATFORM | ):[c]鍜孾/com.bessky.pss.portal/purchase/sam ...

  7. hitcon_2017_ssrfme

    hitcon_2017_ssrfme 进入环境给出源码 <?php if (isset($_SERVER['HTTP_X_FORWARDED_FOR'])) { $http_x_headers ...

  8. 决策树算法4:CHAID

    原理: 其中 n = a+b+c+d 卡方计算(例子)使用 sklearn完成 data.csv中的部分数据 #如何使用卡方检测相关度 from sklearn.feature_selection i ...

  9. git提交错误 git config --global user.email “you@example.com“ git config --global user.name “Your Name

    1 Commit failed - exit code 128 received, with output: '*** Please tell me who you are. 2 3 Run 4 5 ...

  10. 10行 JavaScript 实现文本编辑器

    背景 我们平时用到的浏览器编辑器功能都会比较多,实现的代码逻辑也会非常复杂,往往是作为一个单独插件被引入进来的.但是,现在我只需要一个很基本的内容输入内容编辑的功能,如:粗体.斜体.列表.对齐等.那要 ...