记号

  • \(\otimes\) 代表或/与/异或卷积
  • \(\oplus\) 代表“拼接”,例如 \(A\oplus B\) 即将 \(B\) 接在 \(A\) 的后面;
  • \(+,-,\times\) 代表按位运算,例如 \(A+B=\{a_0+b_0,a_1+b_1,...,a_n + b_n\}\);
  • \(F(A)\) 代表 \(A\) 进行 fwt 后的序列;
  • \(A_0\) 代表 \(A\) 的前半部分,\(A_1\) 代表 \(A\) 的后半部分,\(A_0\oplus A_1 = A\)

或卷积

直接给出或FWT的递归形式:

\[F(A)=\begin{cases}F(A_0) \oplus F(A_0+A_1)&|A| > 1\\A&|A|=1\end{cases}
\]

接下来是一些性质:

  • \(F(A + B) = F(A) + F(B)\),这一点比较明显;
  • \(F(A\otimes B)=F(A) \times F(B)\),直接证明比较麻烦,我们考虑归纳证明。

易知在 \(|A| = |B| = 1\) 时,上述结论成立。

假设已经证明了对于 \(|A| = |B| = \frac n2\) 上述结论成立,下证对于 \(|A| = |B| = n\) 成立。

首先一个简单的分析——考虑 \(A_0\) 和 \(A_1\),其实下标上只有最高位上 \(A_0\) 是 \(0\),\(A_1\) 是 \(1\) 的区别。然后我们再考虑 \((A \otimes B)_0\),既然是或卷积,最高位是 \(0\),那肯定参与的下标都是最高位为 \(0\),也即

\[(A \otimes B)_0 = A_0 \times B_0
\]

稍微复杂的是 \((A \otimes B)_1\),要求最高位至少有一个 \(1\),也就是说

\[(A \otimes B)_1 = A_0 \otimes B_1 + A_1 \otimes B_0 + A_1 \otimes B_1
\]

有了以上的结论就可以完成或卷积性质的证明了:

\[\begin{aligned}
F(A \otimes B) &= F\Big[(A \otimes B)_0\Big] \oplus F\Big[(A \otimes B)_0 + (A \otimes B)_1\Big]\\
&= F(A_0\otimes B_0) \oplus F(A_0 \otimes B_0 + A_0 \otimes B_1 + A_1 \otimes B_0 + A_1 \otimes B_1)\\
&= [F(A_0) \times F(B_0)] \oplus [F(A_0 + A_1) \times F(B_0 + B_1)]\\
&= [F(A_0) \oplus F(A_0 + A_1)] \times [F(B_0) \oplus F(B_0 + B_1)] & \text{(按位运算)}\\
&= F(A) \times F(B)
\end{aligned}
\]

与卷积与或卷积相同。

异或卷积

同样的,我们可以得到

\[\begin{matrix}
(A \otimes B)_0 = A_0 \otimes B_0 + A_1 \otimes B_1\\
(A \otimes B)_1 = A_0 \otimes B_1 + A_1 \otimes B_0
\end{matrix}
\]

然后给出异或FWT的递归式:

\[F(A)=\begin{cases}
F(A_0 + A_1) \oplus F(A_0 - A_1)&|A| > 1\\
A&|A| = 1
\end{cases}
\]

接下来是类似的归纳推导:

\[\begin{aligned}
F(A \otimes B) &= F[(A \otimes B)_0 + (A \otimes B)_1] \oplus F[(A \otimes B)_0 - (A \otimes B)_1]\\
&= F(A_0 \otimes B_0 + A_1 \otimes B_1 + A_0 \otimes B_1 + A_1 \otimes B_0) \oplus F(A_0 \otimes B_0 + A_1 \otimes B_1 - A_0 \otimes B_1 - A_1 \otimes B_0)\\
&= [F(A_0 + A_1) \times F(B_0 + B_1)] \oplus [F(A_0 - A_1) \times F(B_0 - B_1)]\\
&= [F(A_0 + A_1) \oplus F(A_0 - A_1)] \times [F(B_0 + B_1) \otimes F(B_0 - B_1)]\\
&= F(A) \times F(B)
\end{aligned}
\]

小记

之前推导 FWT 是正向的构造,虽然构造非常巧妙,但是不太好理解。尤其是异或卷积利用到“异或后二进制位 1 的个数的奇偶性不变”这种虽然明显,但并不好用的性质。

现在能找到一种用归纳法证明 FWT 的方式,感觉非常直接,所以记下来了。

「postOI」以另一种方式证明 FWT的更多相关文章

  1. 「BJWC2018」Border 的四种求法

    「BJWC2018」Border 的四种求法 题目描述 给一个小写字母字符串 \(S\) ,\(q\) 次询问每次给出 \(l,r\) ,求 \(s[l..r]\) 的 Border . \(1 \l ...

  2. 「MoreThanJava」机器指令到汇编再到高级编程语言

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  3. 「MoreThanJava」Day2:变量、数据类型和运算符

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  4. loj#2552. 「CTSC2018」假面

    题目链接 loj#2552. 「CTSC2018」假面 题解 本题严谨的证明了我菜的本质 对于砍人的操作好做找龙哥就好了,blood很少,每次暴力维护一下 对于操作1 设\(a_i\)为第i个人存活的 ...

  5. 「JavaScript」四种跨域方式详解

    超详细并且带 Demo 的 JavaScript 跨域指南来了! 本文基于你了解 JavaScript 的同源策略,并且了解使用跨域跨域的理由. 1. JSONP 首先要介绍的跨域方法必然是 JSON ...

  6. 「JavaScript」JS四种跨域方式详解

    原文地址https://segmentfault.com/a/1190000003642057 超详细并且带 Demo 的 JavaScript 跨域指南来了! 本文基于你了解 JavaScript ...

  7. Linux 小知识翻译 - 「版本号」的命名方式

    包括OS,所有的软件都有版本号信息.一般来说,版本号的增大表示软件的功能增强了或者修正了一些Bug,也就是表示软件更新了. 版本号的命名方式没有统一的标准.每种软件都不一样. 大部分情况下,版本号以「 ...

  8. 「python」: arp脚本的两种方法

    「python」: arp脚本的两种方法 第一种是使用arping工具: #!/usr/bin/env python import subprocess import sys import re de ...

  9. Android逆向之旅---静态方式分析破解视频编辑应用「Vue」水印问题

    一.故事背景 现在很多人都喜欢玩文艺,特别是我身边的UI们,拍照一分钟修图半小时.就是为了能够在朋友圈显得逼格高,不过的确是挺好看的,修图的软件太多了就不多说了,而且一般都没有水印啥的.相比较短视频有 ...

  10. 「Python」6种python中执行shell命令方法

    用Python调用Shell命令有如下几种方式: 第一种: os.system("The command you want"). 这个调用相当直接,且是同步进行的,程序需要阻塞并等 ...

随机推荐

  1. 二、typora软件的安装与markdown语法

    目录 一.typora软件的安装与使用 1.软件的安装 2.破解使用的方法 3.功能描述(markdown语法讲解) 标题 小标题 语言环境 表格 表情 图片 查看源代码 数学公式 流程图 高亮文本 ...

  2. 为什么要使用 chmod 777

    如上图所示, 不使用sudo,报错没有权限 使用sudo,报错找不到命令 只好chmod 777一下了

  3. C-04\IDE基础知识和分支,循环语句

    一.浮点数特性及比较方法 浮点数在多参数传参的时候默认是会进行精度转换,由float转换到double,浮点数是一个近视值,不能进行直接等于比较,一般可以用区间法比较但是会存在精度丢失的问题. 浮点数 ...

  4. 【HMS Core】机器学习服务助力APP快速集成图像分割与上传功能

    ​ 1.介绍 总览 机器学习服务(ML Kit)提供机器学习套件,为开发者使用机器学习能力开发各类应用,提供优质体验.得益于华为长期技术积累,ML Kit为开发者提供简单易用.服务多样.技术领先的机器 ...

  5. JMH测试工具

    参考:https://blog.csdn.net/agonie201218/article/details/122333354 1 简介 JMH即Java Microbenchmark Harness ...

  6. Vue20 生命周期

    转:https://blog.csdn.net/weixin_45791692/article/details/124045505 1 简介 Vue的生命周期就是vue实例从创建到销毁的全过程,也就是 ...

  7. C# 编写Windows Service Windows服务程序

    一.新建项目--选择Windows 服务,输入新的项目名称,点击确定. 二.服务名称的设置.服务添加安装程序.服务程序代码 1.服务名称的设置:视图 - 解决方案资源管理器 - 你创建的服务项目 默认 ...

  8. 下午小博(java小知识)

    抽象类: 抽象类中可以构造方法 抽象类中可以存在普通属性,方法,静态属性和方法 抽象类中可以存在抽象方法如果一个类中有一个抽象方法,那么当前类一定是抽象类:抽象类中不一定有抽象方法 抽象类中的抽象方法 ...

  9. 给力的Zstack云主机

    合肥光源储存环纵向震荡可视化展示初步结果 前两天做好上面的可视化展示后,想着顺道把那个时间的二维图分析结果给出来吧,就又把纵向震荡的每个束团的频谱和相位顺道可视化显示出来,给计算这些结果的云主机又加点 ...

  10. echarts使用dataset数据集创建单轴散点图

    dataset创建单轴散点图 由于使用echarts作图时,我很喜欢用dataset作为数据源,但是官方案例中,有没有给出相关示例,于是,在翻阅官方文档相关案例之后,结合官方文档使用dataset的示 ...