elasticsearch之metric聚合
1、背景
此篇文章简单的记录一下 elasticsearch
的metric
聚合操作。比如求 平均值、最大值、最小值、求和、总计、去重总计等。
2、准备数据
2.1 准备mapping
PUT /index_person
{
"settings": {
"number_of_shards": 1
},
"mappings": {
"properties": {
"id":{
"type": "long"
},
"name": {
"type": "keyword"
},
"age": {
"type": "integer"
},
"class":{
"type": "text",
"fielddata": true
},
"province":{
"type": "keyword"
}
}
}
}
2.2 准备数据
PUT /index_person/_bulk
{"index":{"_id":1}}
{"id":1, "name":"张三","age":18,"class":"大一班","province":"湖北"}
{"index":{"_id":2}}
{"id":2, "name":"李四","age":19,"class":"大一班","province":"湖北"}
{"index":{"_id":3}}
{"id":3, "name":"王武","age":20,"class":"大二班","province":"北京"}
{"index":{"_id":4}}
{"id":4, "name":"赵六","age":21,"class":"大三班技术班","province":"北京"}
{"index":{"_id":5}}
{"id":5, "name":"钱七","age":22,"class":"大三班","province":"湖北"}
3、metric聚合
3.1 max 平均值
3.1.1 dsl
POST /index_person/_search
{
"size": 0,
"query": {
"match_all": {}
},
"aggs": {
"agg_01": {
"max": {
"field": "age",
"missing": 10
}
}
}
}
POST /index_person/_search
{
"size": 0,
"query": {
"match_all": {}
},
"aggs": {
"agg_01": {
"max": {
"script": {
"lang": "painless",
"source": """
doc.age
"""
}
}
}
}
}
POST /index_person/_search
{
"size": 0,
"query": {
"match_all": {}
},
"aggs": {
"agg_01": {
"max": {
"field": "age",
"script": {
"lang": "painless",
"source": """
_value * params.a
""",
"params": {
"a": 2
}
}
}
}
}
}
3.1.2 java代码
@Test
@DisplayName("最大值聚合")
public void test01() throws IOException {
SearchRequest request = SearchRequest.of(searchRequest ->
searchRequest.index("index_person")
.size(0)
.aggregations("agg_01", agg ->
agg.max(max ->
// 聚合的字段
max.field("age")
// 如果聚合的文档缺失这个字段,则给10
.missing(10)
)
)
);
System.out.println("request: " + request);
SearchResponse<String> response = client.search(request, String.class);
System.out.println("response: " + response);
}
@Test
@DisplayName("脚本聚合")
public void test02() throws IOException {
SearchRequest request = SearchRequest.of(searchRequest ->
searchRequest.index("index_person")
.size(0)
.aggregations("agg_01", agg ->
agg.max(max ->
max.script(script ->
script.inline(inline ->
inline.lang(ScriptLanguage.Painless)
// 脚本表达式
.source("doc.age")
)
)
)
)
);
System.out.println("request: " + request);
SearchResponse<String> response = client.search(request, String.class);
System.out.println("response: " + response);
}
@Test
@DisplayName("值脚本聚合")
public void test03() throws IOException {
SearchRequest request = SearchRequest.of(searchRequest ->
searchRequest.index("index_person")
.size(0)
.aggregations("agg_01", agg ->
agg.max(max ->
// 指定参与聚合的字段
max.field("age")
.script(script ->
script.inline(inline ->
inline.lang(ScriptLanguage.Painless)
// 脚本表达式
.source("_value * params.plus")
// 参数
.params("plus", JsonData.of(2))
)
)
)
)
);
System.out.println("request: " + request);
SearchResponse<String> response = client.search(request, String.class);
System.out.println("response: " + response);
}
3.2 min最小值
3.2.1 dsl
POST /index_person/_search
{
"size": 0,
"query": {
"match_all": {}
},
"aggs": {
"agg_01": {
"min": {
"field": "age",
"missing": 10
}
}
}
}
3.2.2 java
POST /index_person/_search
{
"size": 0,
"query": {
"match_all": {}
},
"aggs": {
"agg_01": {
"min": {
"field": "age",
"missing": 10
}
}
}
}
3.3 min最小值
3.3.1 dsl
POST /index_person/_search
{
"size": 0,
"query": {
"match_all": {}
},
"aggs": {
"agg_01": {
"avg": {
"field": "age",
"missing": 10
}
}
}
}
3.3.2 java
@Test
@DisplayName("平均值聚合")
public void test01() throws IOException {
SearchRequest request = SearchRequest.of(searchRequest ->
searchRequest.index("index_person")
.size(0)
.aggregations("agg_01", agg ->
agg.avg(avg ->
// 聚合的字段
avg.field("age")
// 如果聚合的文档缺失这个字段,则给10
.missing(10)
)
)
);
System.out.println("request: " + request);
SearchResponse<String> response = client.search(request, String.class);
System.out.println("response: " + response);
}
3.4 min最小值
3.4.1 dsl
POST /index_person/_search
{
"size": 0,
"query": {
"match_all": {}
},
"aggs": {
"agg_01": {
"sum": {
"field": "age",
"missing": 10
}
}
}
}
3.4.2 java
@Test
@DisplayName("求和聚合")
public void test01() throws IOException {
SearchRequest request = SearchRequest.of(searchRequest ->
searchRequest.index("index_person")
.size(0)
.aggregations("agg_01", agg ->
agg.sum(sum ->
// 聚合的字段
sum.field("age")
// 如果聚合的文档缺失这个字段,则给10
.missing(10)
)
)
);
System.out.println("request: " + request);
SearchResponse<String> response = client.search(request, String.class);
System.out.println("response: " + response);
}
3.5 count(*)
3.5.1 dsl
POST /index_person/_search
{
"size": 0,
"query": {
"match_all": {}
},
"aggs": {
"agg_01": {
"value_count": {
"field": "province",
"missing": 10
}
}
}
}
3.5.2 java
@Test
@DisplayName("count(*)聚合")
public void test01() throws IOException {
SearchRequest request = SearchRequest.of(searchRequest ->
searchRequest.index("index_person")
.size(0)
.aggregations("agg_01", agg ->
agg.valueCount(valueCount ->
// 聚合的字段
valueCount.field("age")
// 如果聚合的文档缺失这个字段,则给10
.missing(10)
)
)
);
System.out.println("request: " + request);
SearchResponse<String> response = client.search(request, String.class);
System.out.println("response: " + response);
}
3.6 count(distinct)
3.6.1 dsl
POST /index_person/_search
{
"size": 0,
"query": {
"match_all": {}
},
"aggs": {
"agg_01": {
"cardinality": {
"field": "province",
"missing": 10
}
}
}
}
3.6.2 java
@Test
@DisplayName("count(distinct)聚合")
public void test01() throws IOException {
SearchRequest request = SearchRequest.of(searchRequest ->
searchRequest.index("index_person")
.size(0)
.aggregations("agg_01", agg ->
agg.cardinality(cardinality ->
// 聚合的字段
cardinality.field("province")
// 如果聚合的文档缺失这个字段,则给10
.missing(10)
)
)
);
System.out.println("request: " + request);
SearchResponse<String> response = client.search(request, String.class);
System.out.println("response: " + response);
}
3.7 stat (max,min,avg,count,sum)
3.7.1 dsl
POST /index_person/_search
{
"size": 0,
"query": {
"match_all": {}
},
"aggs": {
"agg_01": {
"stats": {
"field": "avg",
"missing": 10
}
}
}
}
3.7.2 java
@Test
@DisplayName("stat聚合")
public void test01() throws IOException {
SearchRequest request = SearchRequest.of(searchRequest ->
searchRequest.index("index_person")
.size(0)
.aggregations("agg_01", agg ->
agg.stats(stats ->
// 聚合的字段
stats.field("age")
// 如果聚合的文档缺失这个字段,则给10
.missing(10)
)
)
);
System.out.println("request: " + request);
SearchResponse<String> response = client.search(request, String.class);
System.out.println("response: " + response);
}
3.8 聚合后返回每个聚合涉及的文档
3.8.1 需求
根据 province
进行terms
聚合,然后获取每个terms
聚合 age
最大的那个文档。
3.8.2 dsl
POST /index_person/_search
{
"size": 0,
"query": {
"range": {
"age": {
"gte": 10
}
}
},
"aggs": {
"agg_01": {
"terms": {
"field": "province"
},
"aggs": {
"agg_02": {
"top_hits": {
"from": 0,
"size": 1,
"sort": [
{
"age": {"order": "desc"}
}
],
"_source": {
"includes": ["id","age","name"]
}
}
}
}
}
}
}
3.8.3 java
@Test
@DisplayName("top hits 聚合")
public void test01() throws IOException {
SearchRequest request = SearchRequest.of(searchRequest ->
searchRequest.index("index_person")
.size(0)
.query(query -> query.range(range -> range.field("age").gt(JsonData.of(10))))
.aggregations("agg_01", agg ->
agg.terms(terms ->
terms.field("province")
)
.aggregations("agg_02", subAgg ->
subAgg.topHits(topHits ->
topHits.from(0)
.size(1)
.sort(sort -> sort.field(field -> field.field("age").order(SortOrder.Desc)))
.source(source -> source.filter(filter -> filter.includes(Arrays.asList("id", "age", "name"))))
)
)
)
);
System.out.println("request: " + request);
SearchResponse<String> response = client.search(request, String.class);
System.out.println("response: " + response);
}
3.8.4 运行结果
4、完整代码
5、参考文档
elasticsearch之metric聚合的更多相关文章
- Elasticsearch(8) --- 聚合查询(Metric聚合)
Elasticsearch(8) --- 聚合查询(Metric聚合) 在Mysql中,我们可以获取一组数据的 最大值(Max).最小值(Min).同样我们能够对这组数据进行 分组(Group).那么 ...
- ElasticSearch实战系列五: ElasticSearch的聚合查询基础使用教程之度量(Metric)聚合
Title:ElasticSearch实战系列四: ElasticSearch的聚合查询基础使用教程之度量(Metric)聚合 前言 在上上一篇中介绍了ElasticSearch实战系列三: Elas ...
- Elasticsearch Metric聚合
首先查看index文档信息 $ curl -XGET "http://172.16.101.55:9200/_cat/indices?v" 输出 health status ind ...
- java使用elasticsearch分组进行聚合查询(group by)-项目中实际应用
java连接elasticsearch 进行聚合查询进行相应操作 一:对单个字段进行分组求和 1.表结构图片: 根据任务id分组,分别统计出每个任务id下有多少个文字标题 .SQL:select id ...
- elasticsearch 权威指南聚合阅读笔记(七)
count(1) select clssId,count(1) from student group by classId { "size":0, "aggs" ...
- 读《深入理解Elasticsearch》点滴-聚合-top_hits
以下是官网手册(部分)(v5.1) 直接直接看官网手册 https://www.elastic.co/guide/en/elasticsearch/reference/5.1/search-aggre ...
- python 使用 elasticsearch 常用方法(聚合)
#记录聚合查询方法 from elasticsearch import Elasticsearch es = Elasticsearch(['xx.xx.xx.xx:9200']) #获取最小的年龄r ...
- 小试牛刀ElasticSearch大数据聚合统计
ElasticSearch相信有不少朋友都了解,即使没有了解过它那相信对ELK也有所认识E即是ElasticSearch.ElasticSearch最开始更多用于检索,作为一搜索的集群产品简单易用绝对 ...
- Elasticsearch强大的聚合功能Facet
在常规数据库中,我们都知道有一个sql就是group,分组.如果主表只有对应的一个列记录的分组的ID,那么还好统计,比如说每本书book表,有一个分类catId,记录是属于哪一类的书,那么直接按照ca ...
- elasticsearch按范围聚合
范围聚合适用于对数据按照指定范围进行分类聚合的应用场景,from和to表示范围起始值的半开半闭区间(包含from值不包含to值),key表示别名 如 {:key=>"2h", ...
随机推荐
- Petrozavodsk Winter Training Camp 2016: Moscow SU Trinity Contest
题目列表 A.ABBA E.Elvis Presley G. Biological Software Utilities J. Burnished Security Updates A.ABBA 题意 ...
- 插件化编程之WebAPI统一返回模型
WebApi返回数据我们一般包裹在一个公共的模型下面的,而不是直接返回最终数据,在返回参数中,显示出当前请求的时间戳,是否请求成功,如果错误那么错误的消息是什么,状态码(根据业务定义的值)等等.我们常 ...
- 认识 Redis client-output-buffer-limit 参数与源码分析
概述 Redis 的 client-output-buffer-limit 可以用来强制断开无法足够快从 redis 服务器端读取数据的客户端.保护机制规则如下: [hard limit] 大小限制, ...
- Typora设置代码块Mac风格三个圆点
写作不停,美化不止! mac小圆点效果 原本代码块样式就挺....干净的,光秃秃的,太单调了: 是吧很丑,于是自己发挥改成了这样: 好吧还是太单调,也没好看到哪里去,于是隔了两天又重新改,DuangD ...
- LeetCode------斐波那契数列(2)
来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/fei-bo-na-qi-shu-lie-lcof 写一个函数,输入 n ,求斐波那契(Fibo ...
- CentOS7虚拟机配置git仓库(配置虚拟机,网络,git仓库,windows端git访问)
想要达成的目的:从windows使用git访问CentOS7服务器上搭建的git仓库 用到的软件: (1)VMware-workstation-full-15.5.0-14665864.exe (2) ...
- 题解 UVA439 骑士的移动 Knight Moves
前言 最近板子题刷多了-- 题意 一个 \(8\times 8\) 的棋盘,问马从起点到终点的最短步数为多少. \(\sf Solution\) 要求最短路径嘛,显然 bfs 更优. 读入 这个读入处 ...
- Selenium4+Python3系列(五) - 多窗口处理之句柄切换
写在前面 感觉到很惭愧呀,因为居然在Selenium+Java系列中没有写过多窗口处理及句柄切换的文章,不过也无妨,不管什么语言,其思路是一样的,下面我们来演示,使用python语言来实现窗口句柄的切 ...
- 基于LZO的高性能无损数据解压缩IP
LZOAccel-D LZO Data Decompression Core/无损数据解压缩IP Core LZOAccel-D是一个无损数据解压缩引擎的FPGA硬件实现,兼容LZO 2.10标准. ...
- Spark简单介绍,Windows下安装Scala+Hadoop+Spark运行环境,集成到IDEA中
一.前言 近几年大数据是异常的火爆,今天小编以java开发的身份来会会大数据,提高一下自己的层面! 大数据技术也是有很多: Hadoop Spark Flink 小编也只知道这些了,由于Hadoop, ...