有监督的图像翻译——Pix2Pix
应用:图像到图像的翻译是GAN的一个重要方向,基于一个输入图像得到输出图像的过程,图像和图像的映射,如标签到图像的生成,图像边缘到图像的生成过程。
图像处理、图形和视觉中的许多问题涉及到将输入图像转换为相应的输出图像。这些问题通常使用算法来处理,尽管设置总是相同的:将像素映射到像素。条件对抗性网是一种通用的解决方案,它似乎能很好地解决各种各样的此类问题。这里我们展示了几种方法的结果。在每种情况下,我们使用相同的架构和目标,只是针对不同的数据进行训练。
使用条件GAN(CGAN)作为一种图像到图像的解决方案,添加条件信息来指导图像的生成,因此输入条件就是输入图像,其他GAN的生成器基于随机噪声产生图像,CGAN不依赖损失函数实现,无需手动设计损失函数。
图像领域的许多问题归结为图像翻译称为相应的输出,从像素预测像素,设计损失函数,生成模型最小化损失函数,
无条件GAN:生成器随机产生图像;有条件GAN:生成器和鉴别器都考虑了边缘映射,条件GNA损失是学习来的。总结:图像到图像到生成,用特定算法实现,像素到像素的映射,用loss function让算法优化。
输入图像为y,x是y的边缘,x经过生成器,得到G(x),x和G(x)作为输入经过判别器,该预测值表示输入是否是一对真实图像。概率越大比表示越接近,
y 和x也作为输入,
随机噪音z作为输入的到生成器,作用???
网络结构:
生成器:U-Net结构
常见的先降采样到低维度,再升采样到原始分辨率的编解码(Encoder-Decoder)结构的网络相比,U-Net的区别是加入skip-connection,对应的feature maps和decode之后的同样大小的feature maps按通道拼(concatenate)一起,用来保留不同分辨率下像素级的细节信息。U-Net对提升细节的效果非常明显。
判别器:采用PathGAN
利用重建解决高频成分,一方面使用L1loss使得生成图片和训练图片相似,另一方面Gan只能用于构建高频信息,
总结:pix2pix使用CGAN框架为图像到图像的翻译提供了一个通用的框架,使用U-Net网络作为生成器,提升细节,利用PatchGAS作为判别器,处理图像的高频部分
参考:https://www.jianshu.com/p/8c7a7cb7198c
有监督的图像翻译——Pix2Pix的更多相关文章
- StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation - 1 - 多个域间的图像翻译论文学习
Abstract 最近在两个领域上的图像翻译研究取得了显著的成果.但是在处理多于两个领域的问题上,现存的方法在尺度和鲁棒性上还是有所欠缺,因为需要为每个图像域对单独训练不同的模型.为了解决该问题,我们 ...
- 无监督域对抗算法:ICCV2019论文解析
无监督域对抗算法:ICCV2019论文解析 Drop to Adapt: Learning Discriminative Features for Unsupervised Domain Adapta ...
- 笔记:基于DCNN的图像语义分割综述
写在前面:一篇魏云超博士的综述论文,完整题目为<基于DCNN的图像语义分割综述>,在这里选择性摘抄和理解,以加深自己印象,同时达到对近年来图像语义分割历史学习和了解的目的,博古才能通今!感 ...
- DeepMind爆出无监督表示学习模型BigBiGAN,GAN之父点赞!
[导读]今天,DeepMind爆出一篇重磅论文,引发学术圈热烈反响:基于最强图像生成器BigGAN,打造了BigBiGAN,在无监督表示学习和图像生成方面均实现了最先进的性能!Ian Goodfell ...
- 语音合成论文翻译:2019_MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis
论文地址:MelGAN:条件波形合成的生成对抗网络 代码地址:https://github.com/descriptinc/melgan-neurips 音频实例:https://melgan-neu ...
- 提高驾驶技术:用GAN去除(爱情)动作片中的马赛克和衣服
同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/27199954 作为一名久经片场的老司机,早就想写一些探讨驾驶技术的文章.这篇就介绍利用生成式对抗网络(GAN)的两个基 ...
- (转)干货|这篇TensorFlow实例教程文章告诉你GANs为何引爆机器学习?(附源码)
干货|这篇TensorFlow实例教程文章告诉你GANs为何引爆机器学习?(附源码) 该博客来源自:https://mp.weixin.qq.com/s?__biz=MzA4NzE1NzYyMw==& ...
- 生成对抗网络(Generative Adversarial Networks,GAN)初探
1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话 ...
- StarGAN学习笔记
11 December 2019 20:32 来自 <https://zhuanlan.zhihu.com/p/44563641> StarGAN StarGAN是CVPR2018 ...
- AI佳作解读系列(六) - 生成对抗网络(GAN)综述精华
注:本文来自机器之心的PaperWeekly系列:万字综述之生成对抗网络(GAN),如有侵权,请联系删除,谢谢! 前阵子学习 GAN 的过程发现现在的 GAN 综述文章大都是 2016 年 Ian G ...
随机推荐
- pg_basebackup恢复:unrecognized configuration parameter "restore_command"
问题描述:2022年最后一个工作日,时间过的真快,一晃又一年过去了,祝愿看到的各位元旦快乐. 使用pg_basebackup进行pg的备份恢复,在恢复的过程中,配置文件添加恢复的参数,一直启动报错. ...
- [常用工具] dlib编译调用指南
dlib是一个C++工具包(dLIB中也有Python接口,但是主要编程语言为C++),包含绝大多数常用的机器学习算法,许多图像处理算法和深度学习算法,被工业界和学术界广泛应用于机器人.嵌入式设备.移 ...
- 微服务框架——MybatisPlus
MybatisPlus 一.快速入门 1.mybatisPlus特性 无侵入:只增强,不改变. 损耗小:启动的时候直接注入基本CRUD 强大的CRUD操作:提供通用Mapper,通用service,条 ...
- [C++]const_cast,dynamic_cast,reinterpret_cast,static_cast转型
C++四种新式转型: const_cast(expression) dynamic_cast(expression) reinterpret_cast(expression) static_cast( ...
- 刷题笔记——1112:C语言考试练习题_一元二次方程
题目 1112:C语言考试练习题_一元二次方程 代码 import math while True: try: a,b,c=map(float,input().strip().split()) del ...
- ChatGPT 背后的“功臣”——RLHF 技术详解
OpenAI 推出的 ChatGPT 对话模型掀起了新的 AI 热潮,它面对多种多样的问题对答如流,似乎已经打破了机器和人的边界.这一工作的背后是大型语言模型 (Large Language Mode ...
- Java基础学习笔记-关键字、标识符、分隔符
标识符(identifier),我的理解呢,简单来说就是一个常量或者变量的名字啦 命名规则: 只能以 字母..$ 这三种开头,后面的话就可以由字母..$和数字组成 不能用Java中的关键字 不能包含空 ...
- JS原生上传文件,读取文件格式,控制文件只可以上传某些格式,并使用fileReader转换格式
本文为代码片段记录,方便后期使用哇! <!DOCTYPE html> <html lang="en"> <head> <meta char ...
- Echarts自适应屏幕,无需刷新网页,可根据屏幕大小完美展现,内有详细代码注释,我可真是个小机灵~~O(∩_∩)O哈哈~
Echarts自适应屏幕,无需刷新网页,可根据屏幕大小完美展现 效果如图 随意拖拉,无惧检验 ~ ~ ~ ~ 下面上代码 里边有详细解释 <template> <div class= ...
- 如何将WebAssembly优化到2MB?
Blazor WebAssembly加载优化方案 对于Blazor WebAssembly加载方案的优化是针对于WebAssembly首次加载,由于BlazorWebAssembly是在首次加载的时候 ...