leetcode-152乘积最大子数组(两个转移方程的正确性证明)
1、dp数组的含义
maxDP[i]中存储 以nums[i]为结尾元素的子数组的最大乘积
minDP[i]中存储 以nums[i]为结尾元素的子数组的最小乘积
注意到:maxDP[i] >= minDP[i] for all i from 0 to nums.size()-1
2、根据maxDP[i]和minDP[i]的正负,分类讨论
情况1:
如果nums[i] == 0
maxDP[i] 等于 0, 注意:任何数字与0的乘积都是0
minDP[i] 等于 0, 注意:任何数字与0的乘积都是0 情况2:
如果nums[i] > 0
maxDP[i] 等于 max{ nums[i], if maxDP[i-1] <= 0
nums[i]*maxDP[i-1](反证法), if maxDP[i-1] > 0
}
注意:maxDP[i-1]的值,已经覆盖了所有情况,不必再考虑minDP[i-1] minDP[i] 等于 min{ nums[i], if minDP[i-1] > 0(不能往左乘,越乘越大)
nums[i]*minDP[i-1](反证法), if minDP[i-1] <= 0
}
注意:minDP[i-1]的值,已经覆盖了所有情况,不必再考虑maxDP[i-1]
情况3:
如果nums[i] < 0
maxDP[i] 等于 max{ nums[i]*minDP[i-1](反证法), if minDP[i-1] < 0
nums[i], if minDP[i-1] => 0
}
注意:minDP[i-1]的值,已经覆盖了所有情况,不必再考虑maxDP[i-1] minDP[i] 等于 min{ nums[i]*maxDP[i-1](反证法), if maxDP[i-1] > 0
nums[i], if maxDp[i-1] <= 0
}
注意:maxDP[i-1]的值,已经覆盖了所有情况,不必再考虑minDP[i-1] 综上,不论是maxDP[i]还是minDP[i],都是在maxDP[i-1]*nums[i],minDP[i-1]*nums[i],nums[i]这三个数中产生的
maxDP[i]是三个数中最大者,minDP[i]是三个数中最小者
maxDP[i] = max(maxDP[i-1]*nums[i], max(minDP[i-1]*nums[i], nums[i]))
minDP[i] = min(minDP[i-1]*nums[i], min(maxDP[i-1]*nums[i], nums[i]))
3、实现
class Solution {
public:
int maxProduct(vector<int>& nums) {
vector<int> minDP(nums), maxDP(nums);
int ans = nums[0];
for (int i = 1; i < nums.size(); i++) {
maxDP[i] = max(maxDP[i-1]*nums[i], max(minDP[i-1]*nums[i], nums[i]));
minDP[i] = min(minDP[i-1]*nums[i], min(maxDP[i-1]*nums[i], nums[i]));
if (maxDP[i] > ans)
ans = maxDP[i];
}
return ans;
}
};
leetcode-152乘积最大子数组(两个转移方程的正确性证明)的更多相关文章
- 1. 线性DP 152. 乘积最大子数组
152. 乘积最大子数组 https://leetcode-cn.com/problems/maximum-product-subarray/ func maxProduct(nums []int) ...
- [LeetCode] Maximum Subarray 最大子数组
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- Java实现 LeetCode 152 乘积最大子序列
152. 乘积最大子序列 给定一个整数数组 nums ,找出一个序列中乘积最大的连续子序列(该序列至少包含一个数). 示例 1: 输入: [2,3,-2,4] 输出: 6 解释: 子数组 [2,3] ...
- [Leetcode] maximun subarray 最大子数组
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- leetcode 刷题(数组篇)152题 乘积最大子数组 (动态规划)
题目描述 给你一个整数数组 nums ,请你找出数组中乘积最大的连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积. 示例 1: 输入: [2,3,-2,4] 输出: 6 解释: 子 ...
- [LeetCode]152. 乘积最大子序列(DP)
题目 给定一个整数数组 nums ,找出一个序列中乘积最大的连续子序列(该序列至少包含一个数). 示例 1: 输入: [2,3,-2,4] 输出: 6 解释: 子数组 [2,3] 有最大乘积 6. 示 ...
- LeetCode | 152. 乘积最大子序列
原题(Medium): 给定一个整数数组 nums ,找出一个序列中乘积最大的连续子序列(该序列至少包含一个数). 思路: 遍历数组时且逐元素相乘时,如果遇到了0,在求乘积最大值的情况下,0左边的元素 ...
- LeetCode 152. 乘积最大子序列(Maximum Product Subarray)
题目描述 给定一个整数数组 nums ,找出一个序列中乘积最大的连续子序列(该序列至少包含一个数). 示例 1: 输入: [2,3,-2,4] 输出: 6 解释: 子数组 [2,3] 有最大乘积 6. ...
- leetcode 152. 乘积最大子序列 java
题目: 给定一个整数数组 nums ,找出一个序列中乘积最大的连续子序列(该序列至少包含一个数). 示例 1: 输入: [2,3,-2,4] 输出: 6 解释: 子数组 [2,3] 有最大乘积 6. ...
- [LeetCode] 152. Maximum Product Subarray 求最大子数组乘积
Given an integer array nums, find the contiguous subarray within an array (containing at least one n ...
随机推荐
- JAVA排序的方法
//冒泡排序法: package fuxi;public class Bubble { public static void main(String[] args) { int a ...
- ps4双手柄inputManager设置
ps4键位 https://blog.csdn.net/egostudio/article/details/51463819 xbox键位 http://www.360doc.com/content/ ...
- 简单介绍Python中如何给字典设置默认值
这篇文章主要介绍了Python中如何给字典设置默认值问题,具有很好的参考价值,希望对大家有所帮助.如有错误或未考虑完全的地方,望不吝赐教 Python字典设置默认值 我们都知道,在 Python 的字 ...
- Redis一主多从哨兵模式
首先配置一主多从示例如下: 1.两台主机IP地址如下: 主: 192.168.3.81 端口:6379 从:192.168.3.82 端口:6379 从:192.168.3.82 端口:6380 ...
- react 01基础 样式
一,react 特点 1. 声明式设计 2.虚拟dom 3.jsx 4.组件化,模块化 5.单向数据流 二,脚手架 Create React App npm i -g create-react-app ...
- 05 RDD练习:词频统计,学习课程分数
.词频统计: 1.读文本文件生成RDD lines 2.将一行一行的文本分割成单词 words flatmap() 3.全部转换为小写 lower() 4.去掉长度小于3的单词 filter() 5. ...
- 如何使用纯JS过掉淘宝滑块
起因 众所周知淘宝滑块很难过掉,今天博主就专门研究了一下淘宝滑块,之前博主也有研究过但是发现并不好过.今天恰好有个项目需要淘宝登录,就有滑块验证,说明一下博主做的是浏览器插件哦.今天博主打算在研究滑块 ...
- 2021.09 ccf csp 第四题 收集卡牌
2021.09 ccf csp 第四题 收集卡牌 思路 这题如果直接计算,因为不同的分类种数太多,枚举所有的分类情况是一个几乎不可能的复杂任务. 但不同摸牌次数,不同已摸出牌种类的子问题的答案之间,具 ...
- 了解ASP (一)
1. ASP是什么? ASP 指 Active Server Pages (动态服务器页面), 是在 IIS 中运行的程序.ASP 文件的扩展名是 ".asp" 2. ASP与HT ...
- 【Linux】Linux网络编程
socket 默认开启的socket是阻塞的,想要设置非阻塞的话,可以用 fcntl设置为 nonblock:或者使用setsockopt进行更多设置: 一般使用推荐 设成nonblock,然后epo ...