ua5.4源码剖析:三. C++与Lua相互调用
概述
从本质上来看,其实说是不存在所谓的C++与lua的相互调用。lua是运行在C上的,简单来说lua的代码会被编译成字节码在被C语言的语法运行。在C++调用lua时,其实是解释运行lua文件编译出来的字节码。lua调用C++其实还是解释运行lua文件编译出来的字节码的语义是调用lua栈上的C++函数。
示例
来看下面这段代码:
C++
#include "Inc/lua.h"
#include "Inc/lauxlib.h"
#include "Inc/lualib.h"
#include "Inc/lobject.h"
}
using std::cout;
using std::endl;
int CAdd(lua_State* L)
{
int a = lua_tonumber(L, 2);
int b = lua_tonumber(L, 1);;
int sum = a + b;
lua_pushnumber(L, sum);
return 1;
}
int main()
{
lua_State* L = luaL_newstate();
luaL_openlibs(L);
lua_register(L, "CAdd", CAdd);
int stat = luaL_loadfile(L, "Test.lua") | lua_pcall(L, 0, 0, 0);
if (stat)
{
cout << "error" << endl;
}
else
{
cout << "succ" << endl;
}
lua_close(L);
return 0;
}
lua
local x = CAdd(1, 2)
print("x = " .. tostring(x))
运行结果:
考虑上述C++代码luaL_loadfile去加载并调用lua,lua又调用了C++注册到lua虚拟机里的CAdd函数并正确打印了返回值,结果如图所示。到底发生了什么?
C++调用lua
C++调用lua时,是对lua代码进行编译生成字节码,在运行时对字节码使用C的语法解释运行。
对luaL_loadfile调试,跟到f_parser:
static void f_parser (lua_State *L, void *ud) {
LClosure *cl;
struct SParser *p = cast(struct SParser *, ud);
int c = zgetc(p->z); /* read first character */
if (c == LUA_SIGNATURE[0]) {
checkmode(L, p->mode, "binary");
cl = luaU_undump(L, p->z, p->name);
}
else {
checkmode(L, p->mode, "text");
cl = luaY_parser(L, p->z, &p->buff, &p->dyd, p->name, c);
}
lua_assert(cl->nupvalues == cl->p->sizeupvalues);
luaF_initupvals(L, cl);
}
简单来说,parser根据输入进行词法,语法分析进行编码生成闭包,然后推入栈中等待调用。来看几个用到的数据结构。
LClosure
typedef struct LClosure {
ClosureHeader;
struct Proto *p;
UpVal *upvals[1]; //被捕获的外局部变量
} LClosure;
这是lua的闭包,此外还有CClosure是c的闭包,下面lua调用C++会提到,它们被Closure联合体包裹。
Proto
typedef struct Proto {
CommonHeader;
lu_byte numparams; /* number of fixed parameters */
lu_byte is_vararg;
lu_byte maxstacksize; /* number of registers needed by this function */
int sizeupvalues; /* size of 'upvalues' */
int sizek; /* size of 'k' */
int sizecode;
int sizelineinfo;
int sizep; /* size of 'p' */
int sizelocvars;
int linedefined; /* debug information */
int lastlinedefined; /* debug information */
TValue *k; /* constants used by the function */
Instruction *code; //codes
struct Proto **p; /* functions defined inside the function */
int *lineinfo; /* map from opcodes to source lines (debug information) */
LocVar *locvars; /* information about local variables (debug information) */
Upvaldesc *upvalues; /* upvalue information */
struct LClosure *cache; /* last-created closure with this prototype */
TString *source; /* used for debug information */
GCObject *gclist;
} Proto;
Instruction *code;注意这个变量,这个变量就是指向我们编译后生成字节码数组的指针。
FuncState
typedef struct FuncState {
Proto *f; /* current function header */
struct FuncState *prev; /* enclosing function */
struct LexState *ls; /* lexical state */
struct BlockCnt *bl; /* chain of current blocks */
int pc; /* next position to code (equivalent to 'ncode') */
int lasttarget; /* 'label' of last 'jump label' */
int jpc; /* list of pending jumps to 'pc' */
int nk; /* number of elements in 'k' */
int np; /* number of elements in 'p' */
int firstlocal; /* index of first local var (in Dyndata array) */
short nlocvars; /* number of elements in 'f->locvars' */
lu_byte nactvar; /* number of active local variables */
lu_byte nups; /* number of upvalues */
lu_byte freereg; /* first free register */
} FuncState;
FuncState互相是嵌套的,外部FuncState保存了内部的部分信息,最外部的FuncState的f成员保存了编译的所有字节码,并传递给闭包LClosure。
编译lua流程
以加载lua脚本为例。
- f_parser调用luaY_parser分析,并初始化Upvalues(外局部变量)。
- luaY_parser 使用LexState包裹FuncState调用luaX_next进行进一步分析,其结果保存到Proto结构的code数组中,传递给LClosure并推入栈中。
- luaX_next循环分析,依据词法,语法规则调用luaK_code生成字节码。
部分代码:
static void statement (LexState *ls) {
int line = ls->linenumber; /* may be needed for error messages */
enterlevel(ls);
switch (ls->t.token) {
case ';': { /* stat -> ';' (empty statement) */
luaX_next(ls); /* skip ';' */
break;
}
case TK_IF: { /* stat -> ifstat */
ifstat(ls, line);
break;
}
//.....................
}
}
运行
编译代码后,便可对闭包进行解析运行了。调试代码上述 lua_pcall(L, 0, 0, 0) 代码,跟到luaD_call:
void luaD_call (lua_State *L, StkId func, int nResults) {
if (++L->nCcalls >= LUAI_MAXCCALLS)
stackerror(L);
if (!luaD_precall(L, func, nResults)) /* is a Lua function? */
luaV_execute(L); /* call it */
L->nCcalls--;
}
}
首先调用luaD_precall进行预备工作,lua_state扩展base_ci(CallInfo类型)数组创建一个新元素保存括虚拟机的指令指针(lua_state->savedpc)在内的调用堆栈的状态以便调用结束后恢复调用堆栈,并把指令指针指向该闭包的指令数组(Closure->p->codes)。
然后调用luaV_execute循环取出指令运行。 。
luaV_execute解释执行部分代码:
void luaV_execute (lua_State *L) {
CallInfo *ci = L->ci;
LClosure *cl;
TValue *k;
StkId base;
ci->callstatus |= CIST_FRESH; /* fresh invocation of 'luaV_execute" */
newframe: /* reentry point when frame changes (call/return) */
lua_assert(ci == L->ci);
cl = clLvalue(ci->func); /* local reference to function's closure */
k = cl->p->k; /* local reference to function's constant table */
base = ci->u.l.base; /* local copy of function's base */
/* main loop of interpreter */
for (;;) {
Instruction i;
StkId ra;
vmfetch();
vmdispatch (GET_OPCODE(i)) {
vmcase(OP_MOVE) {
setobjs2s(L, ra, RB(i));
vmbreak;
}
//............................
}
}
CallInfo
函数执行时,lua_state通过CallInfo 数据结构了解函数的状态信息,并通过CallInfo组base_ci的上下生长来维护调用堆栈。
typedef struct CallInfo {
StkId func; /* function index in the stack */
StkId top; /* top for this function */
struct CallInfo *previous, *next; /* dynamic call link */
union {
struct { /* only for Lua functions */
StkId base; /* base for this function */
const Instruction *savedpc;
} l;
struct { /* only for C functions */
lua_KFunction k; /* continuation in case of yields */
ptrdiff_t old_errfunc;
lua_KContext ctx; /* context info. in case of yields */
} c;
} u;
ptrdiff_t extra;
short nresults; /* expected number of results from this function */
unsigned short callstatus;
} CallInfo;
lua调用C++
lua调用C++,是上述C++调用lua时即c的语法解释运行lua代码生成的字节码的一种情况,即取出lua状态机全局表中的CClosure中的函数指针运行。
来看下向lua状态机注册C++函数lua_register
#define lua_pushcfunction(L,f) lua_pushcclosure(L, (f), 0)
#define lua_register(L,n,f) (lua_pushcfunction(L, (f)), lua_setglobal(L, (n)))
LUA_API void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n) {
lua_lock(L);
if (n == 0) {
setfvalue(s2v(L->top), fn);
api_incr_top(L);
}
else {
CClosure *cl;
api_checknelems(L, n);
api_check(L, n <= MAXUPVAL, "upvalue index too large");
cl = luaF_newCclosure(L, n);
cl->f = fn;
L->top -= n;
while (n--) {
setobj2n(L, &cl->upvalue[n], s2v(L->top + n));
/* does not need barrier because closure is white */
}
setclCvalue(L, s2v(L->top), cl);
api_incr_top(L);
luaC_checkGC(L);
}
lua_unlock(L);
}
可以看到这里最终创建了一个CCloseure,包裹住lua_CFunction类型的函数指针并推入栈顶和放入全局表中。
typedef int (*lua_CFunction) (lua_State *L);
typedef struct CClosure {
ClosureHeader;
lua_CFunction f;
TValue upvalue[1]; /* list of upvalues */
} CClosure;
可以看到CClosure包含了一个lua_CFunction类型的函数指针和upvalue的链表
解释运行调用语义
循环解释字节码语义的关于调用的部分
void luaV_execute (lua_State *L, CallInfo *ci) {
//...
vmcase(OP_CALL) {
int b = GETARG_B(i);
int nresults = GETARG_C(i) - 1;
if (b != 0) /* fixed number of arguments? */
L->top = ra + b; /* top signals number of arguments */
/* else previous instruction set top */
ProtectNT(luaD_call(L, ra, nresults));
vmbreak;
}
//...
}
可以看到调用语义的解释调用了luaD_call
void luaD_call (lua_State *L, StkId func, int nresults) {
lua_CFunction f;
retry:
switch (ttypetag(s2v(func))) {
case LUA_VCCL: /* C closure */
f = clCvalue(s2v(func))->f;
goto Cfunc;
case LUA_VLCF: /* light C function */
f = fvalue(s2v(func));
Cfunc: {
int n; /* number of returns */
CallInfo *ci = next_ci(L);
checkstackp(L, LUA_MINSTACK, func); /* ensure minimum stack size */
ci->nresults = nresults;
ci->callstatus = CIST_C;
ci->top = L->top + LUA_MINSTACK;
ci->func = func;
L->ci = ci;
lua_assert(ci->top <= L->stack_last);
if (L->hookmask & LUA_MASKCALL) {
int narg = cast_int(L->top - func) - 1;
luaD_hook(L, LUA_HOOKCALL, -1, 1, narg);
}
lua_unlock(L);
n = (*f)(L); /* do the actual call */
lua_lock(L);
api_checknelems(L, n);
luaD_poscall(L, ci, n);
break;
}
//...
可以看到这里取到了上述Closure中的函数指针并进行调用。
ua5.4源码剖析:三. C++与Lua相互调用的更多相关文章
- jdk源码剖析三:锁Synchronized
一.Synchronized作用 (1)确保线程互斥的访问同步代码 (2)保证共享变量的修改能够及时可见 (3)有效解决重排序问题.(Synchronized同步中的代码JVM不会轻易优化重排序) 二 ...
- Django Rest Framework源码剖析(三)-----频率控制
一.简介 承接上篇文章Django Rest Framework源码剖析(二)-----权限,当服务的接口被频繁调用,导致资源紧张怎么办呢?当然或许有很多解决办法,比如:负载均衡.提高服务器配置.通过 ...
- (文字版)Qt信号槽源码剖析(三)
大家好,我是IT文艺男,来自一线大厂的一线程序员 上节视频给大家讲解了Qt信号槽的Qt宏展开推导:今天接着深入分析,进入Qt信号槽源码剖析系列的第三节视频. Qt信号槽宏推导归纳 #define si ...
- Dubbo源码剖析三之服务注册过程分析
Dubbo源码剖析二之注册中心 - 池塘里洗澡的鸭子 - 博客园 (cnblogs.com)中对注册中心进行了简单的介绍,对Dubbo整合Zookeeper链接源码进行了详细分析.本文接着对服务注册过 ...
- boost.asio源码剖析(三) ---- 流程分析
* 常见流程分析之一(Tcp异步连接) 我们用一个简单的demo分析Tcp异步连接的流程: #include <iostream> #include <boost/asio.hpp& ...
- STL源码剖析 迭代器(iterator)概念与编程技法(三)
1 STL迭代器原理 1.1 迭代器(iterator)是一中检查容器内元素并遍历元素的数据类型,STL设计的精髓在于,把容器(Containers)和算法(Algorithms)分开,而迭代器(i ...
- 面试题总结(三)、《STL源码剖析》相关面试题总结
声明:本文主要探讨与STL实现相关的面试题,主要参考侯捷的<STL源码剖析>,每一个知识点讨论力求简洁,便于记忆,但讨论深度有限,如要深入研究可点击参考链接,希望对正在找工作的同学有点帮助 ...
- Netty学习笔记(三)——netty源码剖析
1.Netty启动源码剖析 启动类: public class NettyNioServer { public static void main(String[] args) throws Excep ...
- 菜鸟nginx源码剖析数据结构篇(三) 单向链表 ngx_list_t[转]
菜鸟nginx源码剖析数据结构篇(三) 单向链表 ngx_list_t Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blog.csd ...
- 08.ElementUI 2.X 源码学习:源码剖析之工程化(三)
0x.00 前言 项目工程化系列文章链接如下,推荐按照顺序阅读文章 . 1️⃣ 源码剖析之工程化(一):项目概览.package.json.npm script 2️⃣ 源码剖析之工程化(二):项目构 ...
随机推荐
- Razor中RenderBoby的使用
1. RenderBody 在Razor引擎中没有了"母版页",取而代之的是叫做"布局"的页面(_Layout.cshtml)放在了共享视图文件夹中.在这个页面 ...
- webpack4--按需加载
在做单页面应用的过程中,通常利用webpack打包文件,将依赖的外部问价单独打一个vendor.js.这样就会有个问题,这个文件会随着你引用的包的增多,体积会越来越大.在路由中利用import 引用文 ...
- springboot集成支付宝的支付(easy版)
SpringBoot对接支付宝 需要先注册账号 到支付宝开发者平台创建网页支付应用 启用公钥模式 需要使用到appId和下面的两个秘钥 写配置信息的代码 1.引入依赖 <dependency&g ...
- 2022春每日一题:Day 36
题目:[JLOI2013]删除物品 直接做显然比较复杂,这个题是说对顶栈,但是可以把两个栈拼在一起,记录一下栈顶的下标,然后这样这题就可以转化为线性上的操作查询了,用树状数组简单维护一下就ok了(某个 ...
- Spring Cloud Circuit Breaker 使用示例
Spring Cloud Circuit Breaker 使用示例 作者: Grey 原文地址: 博客园:Spring Cloud Circuit Breaker 使用示例 CSDN:Spring C ...
- 【Java并发010】使用层面:发令枪CountDownLatch全解析
一.前言 CountDownLatch是在java1.5被引入,存在于java.util.cucurrent包中,跟它一起被引入的工具类还有CyclicBarrier.Semaphore.concur ...
- MIT6.828 Lab 1: C, Assembly, Tools, and Bootstrapping
前置准备 实现机器为VMWare的虚拟机,操作系统为 Debian-11(无桌面版本),内核版本为 5.10.0,指令集为 AMD64(i7 9700K),编译器为 GCC-10 QEMU 虚拟化支持 ...
- Windows及eclipse常用快捷键-小彤在努力
Windows快捷键 Ctrl+A:全选 Ctrl+S:保存 Ctrl+Z:撤回 Ctrl+X:剪切 Ctrl+C:复制 Ctrl+V:粘贴 Ctrl+F:查找 Windows+E:打开我的电脑 Al ...
- 【Spark】Day01-入门、模块组成、4种运行模式详解及配置、案例实操(spark分析过程)
一.概述 1.概念 基于内存的大数据分析计算引擎 2.特点 快速.通用.可融合性 3.Spark内置模块[腾讯8000台spark集群] Spark运行在集群管理器(Cluster Manager)上 ...
- 李宏毅机器学习笔记:从0到写AI
part1.基本介绍 1.机器学习的三个任务 一般情况下,我们在机器学习中有三个基本任务,分别是Regression Classification和Structured Regression是计算数值 ...