OpenCV-Python:IV OpenCV中的图像处理

18 图像梯度

目标
  • 图像梯度,图像边界等
  • 使用到的函数有:cv2.Sobel(),cv2.Schar(),cv2.Laplacian() 等

原理
  梯度简单来说就是求导。
  OpenCV 提供了三种不同的梯度滤波器,或者说高通滤波器:Sobel,Scharr 和 Laplacian。我们会一一介绍他们。
  Sobel,Scharr 其实就是求一阶或二阶导数。Scharr 是对 Sobel(使用小的卷积核求解求解梯度角度时)的优化。Laplacian 是求二阶导数。

18.1 Sobel 算子和 Scharr 算子

Sobel 算子是高斯平滑与微分操作的结合体,所以它的抗噪声能力很好。你可以设定求导的方向(xorder 或 yorder)。还可以设定使用的卷积核的大小(ksize)。如果 ksize=-1,会使用 3x3 的 Scharr 滤波器,它的的效果要比 3x3 的 Sobel 滤波器好(而且速度相同,所以在使用 3x3 滤波器时应该尽量使用 Scharr 滤波器)。3x3 的 Scharr 滤波器卷积核如下:
   

18.2 Laplacian 算子

拉普拉斯算子可以使用二阶导数的形式定义,可假设其离散实现类似于二阶 Sobel 导数,事实上,OpenCV 在计算拉普拉斯算子时直接调用 Sobel 算子。计算公式如下:
     

拉普拉斯滤波器使用的卷积核:
      

代码
  下面的代码分别使用以上三种滤波器对同一幅图进行操作。使用的卷积核都是 5x5 的。

import cv2
import numpy as np
from matplotlib import pyplot as plt img = cv2.imread('dave.jpg',0) laplacian = cv2.Laplacian(img,cv2.CV_64F)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5) plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray')
plt.title('Sobel X'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,4),plt.imshow(sobely,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([]) plt.show()

结果:

一个重要的事!
  在查看上面这个例子的注释时不知道你有没有注意到:当我们可以通过参数 -1 来设定输出图像的深度(数据类型)与原图像保持一致,但是我们在代码中使用的却是 cv2.CV_64F。这是为什么呢?想象一下一个从黑到白的边界的导数是整数,而一个从白到黑的边界点导数却是负数。如果原图像的深度是np.int8 时,所有的负值都会被截断变成 0,换句话说就是把把边界丢失掉。所以如果这两种边界你都想检测到,最好的的办法就是将输出的数据类型设置的更高,比如 cv2.CV_16S,cv2.CV_64F 等。取绝对值然后再把它转回到 cv2.CV_8U。下面的示例演示了输出图片的深度不同造成的不同效果。

import cv2
import numpy as np
from matplotlib import pyplot as plt img = cv2.imread('box.png',0) # Output dtype = cv2.CV_8U
sobelx8u = cv2.Sobel(img,cv2.CV_8U,1,0,ksize=5) # Output dtype = cv2.CV_64F. Then take its absolute and convert to cv2.CV_8U
sobelx64f = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
abs_sobel64f = np.absolute(sobelx64f)
sobel_8u = np.uint8(abs_sobel64f) plt.subplot(1,3,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,2),plt.imshow(sobelx8u,cmap = 'gray')
plt.title('Sobel CV_8U'), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,3),plt.imshow(sobel_8u,cmap = 'gray')
plt.title('Sobel abs(CV_64F)'), plt.xticks([]), plt.yticks([]) plt.show()

结果:

更多内容请关注公众号:

[OpenCV-Python] 18 图像梯度的更多相关文章

  1. opencv python:图像梯度

    一阶导数与Soble算子 二阶导数与拉普拉斯算子 图像边缘: Soble算子: 二阶导数: 拉普拉斯算子: import cv2 as cv import numpy as np # 图像梯度(由x, ...

  2. python实现图像梯度

    一,定义与作用 图像梯度作用:获取图像边缘信息 二,Sobel 算子与函数的使用 (1)Sobel 算子------来计算变化率 (2)Sobel函数的使用 (3-1)代码实现(分别): (3-2)代 ...

  3. Opencv python图像处理-图像相似度计算

    一.相关概念 一般我们人区分谁是谁,给物品分类,都是通过各种特征去辨别的,比如黑长直.大白腿.樱桃唇.瓜子脸.王麻子脸上有麻子,隔壁老王和儿子很像,但是儿子下巴涨了一颗痣和他妈一模一样,让你确定这是你 ...

  4. opencv python:图像直方图 histogram

    直接用matplotlib画出直方图 def plot_demo(image): plt.hist(image.ravel(), 256, [0, 256]) # image.ravel()将图像展开 ...

  5. openCV—Python(5)—— 图像几何变换

    一.函数简单介绍 1.warpAffine-图像放射变换(平移.旋转.缩放) 函数原型:warpAffine(src, M, dsize, dst=None, flags=None, borderMo ...

  6. opencv python:图像金字塔

    图像金字塔原理 expand = 扩大+卷积 拉普拉斯金字塔 PyrDown:降采样 PyrUp:还原 example import cv2 as cv import numpy as np # 图像 ...

  7. opencv python:图像二值化

    import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 二值图像就是将灰度图转化成黑白图,没有灰,在一个值之前为黑, ...

  8. opencv+python实现图像锐化

    突然发现网上都是些太繁琐的方法,我就找opencv锐化函数咋这么墨迹. 直接上代码: kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]], ...

  9. Python+OpenCV图像处理(十二)—— 图像梯度

    简介:图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导. Sobel算子是普通一阶差分,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值, ...

  10. opencv学习笔记(六)---图像梯度

    图像梯度的算法有很多方法:sabel算子,scharr算子,laplacian算子,sanny边缘检测(下个随笔)... 这些算子的原理可参考:https://blog.csdn.net/poem_q ...

随机推荐

  1. C#截取字符串的方法

    #region 得到字符串的长度    /// <summary>    /// 得到字符串的长度    /// </summary>    /// <param nam ...

  2. tomcat的SSL配置

    Table of Contents 1. 删除别名为tomcat的密钥 2. 生成别名为tomcat的密钥 3. tomcat配置密钥存储路径 4. 生成证书并通过浏览器导入 5. 80,443端口重 ...

  3. C#重点语法——特性

    特性的基本理解 ************************************************************************************* 一.含义 特 ...

  4. 如何确定有价值的RPA场景

    什么是RPA? RPA(Robotic Process Automation,机器人流程自动化)是通过特定的.可模拟人类在计算机界面上进行操作的技术,按规则自动执行相应的流程任务,代替或辅助人类完成相 ...

  5. Python学习笔记--数据可视化的开头

    JSON数据格式的转换 示例: 若是有中文数据,可以在data后面加上ensure_ascii=False pyecharts模块 网站:https://gallery.pyecharts.org(有 ...

  6. svn提交规范

    本文档参考了Git提交规范,旨在规范使用SVN进行代码版本管理时的提交操作. 提交前的准备 1. 检查代码 在提交代码前,请先进行必要的代码检查,确保代码的正确性.可读性和可维护性.可以使用代码质量管 ...

  7. INT 21H 指令说明及使用方法 (转载)

    转载这篇博客 https://www.cnblogs.com/ynwlgh/archive/2011/12/12/2285017.html 侵删   送张ascii码表 很多初学汇编语言的同学可能会对 ...

  8. 一文学会Flex布局

    参考: <CSS权威指南>(第四版) flex布局教程-语法篇-阮一峰 1.Flex布局是什么 FlexBox,弹性盒布局,顾名思义,就是元素具有弹性,能根据可用空间大小增减尺寸. 2.基 ...

  9. Kafka 实现延迟队列、死信队列、重试队列

    更多内容,访问 IT-BLOG Kafka中实现延迟队列 在发送延时消息的时候并不是先投递到要发送的真实主题(real_topic)中,而是先投递到一些 Kafka 内部的主题(delay_topic ...

  10. Linux中Python自动输入sudo 密码【管道 sudo参数 stdin&stdout】

    一.背景和需求 背景: 由于docker服务进程都是以root帐号的身份运行的,所以用docker跑abpred出来的文件所有者都是root, 而我作为一般用户,操作这个文件不够权限,运行代码时需要s ...