「题解报告」 P3167 [CQOI2014]通配符匹配
「题解报告」 P3167 [CQOI2014]通配符匹配
思路
*
和?
显然无法直接匹配,但是可以发现「通配符个数不超过 \(10\) 」,那么我们可以考虑分段匹配。
我们首先把原字符串分成多个以一个通配符开头的字符串,如将 happy*birthdey?xingchen
分成:
happy
*birthday
?xingchen
然后设原串有 \(m\) 个通配符, \(op_i\) 表示分出来的第 \(i\) 个串前的通配符(\(0\) 没有,\(1\) 是?
,\(2\) 是*
),\(len_i\) 表示分出来的第 \(i\) 个串的长度,\(f_{i,j}\) 表示分出来的第 \(i\) 个串的结尾能否匹配上当前查询的字符串的位置 \(j\)。
则转移方程显然为:
\begin{cases}
f_{i-1,j-len_i}&op_i=0\\
f_{i-1,j-len_i-1}&op_i=1\\
\sum_{k=0}^{j-len}f_{i-1,j-len_i}&op_i=2\\
\end{cases}
\]
能否转移直接用 Hash \(\Theta(1)\) 比较即可。
初始状态 \(f_{0,0}=1\),答案为 \(f_{m,\left|S\right|}\),时间复杂度 \(\Theta(mn\left|S\right|)\)。
代码
const ll N=1e5+10,inf=1ll<<40;
ll T,n,m=1,ln,ans;
ll a1[20],a2[20],len[20],op[20];
ll f[20][N],sm[N];
char s[N],t[N];
class Hash{
public:
const ll P1=315716521,P2=475262633;
ll h1[N],h2[N],z1[N],z2[N];
inline void Init(char *s){
z1[0]=z2[0]=1;
ll length=strlen(s+1);
_for(i,1,length){
z1[i]=z1[i-1]*233%P1;
z2[i]=z2[i-1]*233%P2;
h1[i]=(h1[i-1]*233+s[i]-'a'+1)%P1;
h2[i]=(h2[i-1]*233+s[i]-'a'+1)%P2;
}
return;
}
inline ll GetHash1(ll l,ll r){return (h1[r]-h1[l-1]*z1[r-l+1]%P1+P1)%P1;}
inline ll GetHash2(ll l,ll r){return (h2[r]-h2[l-1]*z2[r-l+1]%P2+P2)%P2;}
}b;
namespace SOLVE{
inline ll rnt(){
ll x=0,w=1;char c=getchar();
while(!isdigit(c)){if(c=='-')w=-1;c=getchar();}
while(isdigit(c))x=(x<<3)+(x<<1)+(c^48),c=getchar();
return x*w;
}
inline ll GetA1(char *awa){
ll hash_val=0;
ll length=strlen(awa+1);
_for(i,1,length)hash_val=(hash_val*233+awa[i]-'a'+1)%b.P1;
return hash_val;
}
inline ll GetA2(char *awa){
ll hash_val=0;
ll length=strlen(awa+1);
_for(i,1,length)hash_val=(hash_val*233+awa[i]-'a'+1)%b.P2;
return hash_val;
}
inline void Pre(){
char qwq[N];
_for(i,1,n){
if(s[i]=='?'||s[i]=='*'){
if(i==1)--m;
a1[m]=GetA1(qwq);
a2[m]=GetA2(qwq);
memset(qwq,0,sizeof(qwq));
op[++m]=(s[i]=='?')?1:2;
}
else qwq[++len[m]]=s[i];
}
a1[m]=GetA1(qwq);
a2[m]=GetA2(qwq);
return;
}
inline bool Check(ll a,ll i){
if(a1[a]!=b.GetHash1(i-len[a]+1,i))return 0;
if(a2[a]!=b.GetHash2(i-len[a]+1,i))return 0;
return 1;
}
inline void PP(){
f[0][0]=1;
_for(i,0,ln)sm[i]=1;
_for(i,1,m){
_for(j,0,ln)f[i][j]=0;
for_(j,ln,len[i]){
if(Check(i,j)){
if(op[i]==0)f[i][j]=f[i-1][j-len[i]];
else if(op[i]==1)f[i][j]=f[i-1][j-len[i]-1];
else f[i][j]=sm[j-len[i]];
}
}
sm[0]=0;
_for(j,1,ln)sm[j]=sm[j-1]|f[i][j];
}
return;
}
inline void In(){
scanf("%s",s+1);
n=strlen(s+1),Pre();
T=rnt();
while(T--){
scanf("%s",t+1);
b.Init(t),ln=strlen(t+1);
PP(),puts(f[m][ln]?"YES":"NO");
}
return;
}
}
「题解报告」 P3167 [CQOI2014]通配符匹配的更多相关文章
- P3167 [CQOI2014]通配符匹配 题解
题目 题目大意 给出一个字符串,其中包含两种通配符 ‘?’和 ‘*’ ,‘?’可以代替一个字符,‘*’可以代替一个字符串(长度可以为0) 然后给出几个字符转,判断能否用给出的字符串表示出来 样例解释 ...
- 「题解报告」P4577 [FJOI2018]领导集团问题
题解 P4577 [FJOI2018]领导集团问题 题解区好像没有线段树上又套了二分的做法,于是就有了这片题解. 题目传送门 怀着必 WA 的决心交了两发,一不小心就过了. 题意 求一个树上最长不下降 ...
- 「题解报告」P2154 虔诚的墓主人
P2154 虔诚的墓主人 题解 原题传送门 题意 在 \(n\times m\) 一个方格上给你 \(w\) 个点,求方格里每个点正上下左右各选 \(k\) 个点的方案数. \(1 \le N, M ...
- 「题解报告」SP16185 Mining your own business
题解 SP16185 Mining your own business 原题传送门 题意 给你一个无向图,求至少安装多少个太平井,才能使不管那个点封闭,其他点都可以与有太平井的点联通. 题解 其他题解 ...
- 「题解报告」Blocks
P3503 Blocks 题解 原题传送门 思路 首先我们可以发现,若 \(a_l\) ~ \(a_r\) 的平均值大于等于 \(k\) ,则这个区间一定可以转化为都大于等于 \(k\) 的.我们就把 ...
- 「题解报告」P3354
P3354 题解 题目传送门 一道很恶心的树形dp 但是我喜欢 题目大意: 一片海旁边有一条树状的河,入海口有一个大伐木场,每条河的分叉处都有村庄.建了伐木场的村庄可以直接处理木料,否则要往下游的伐木 ...
- 「题解报告」CF1067A Array Without Local Maximums
大佬们的题解都太深奥了,直接把转移方程放出来让其他大佬们感性理解,蒟蒻们很难理解,所以我就写了一篇让像我一样的蒟蒻能看懂的题解 原题传送门 动态规划三部曲:确定状态,转移方程,初始状态和答案. --神 ...
- P3167 [CQOI2014]通配符匹配
吐槽 本来是去写AC自动机的,然后发现数据范围每个串100000,有100个串(???),连塞进trie树里都塞不进去,玩个鬼的AC自动机啊,tag不要乱打啊 最后拿字符串hash+爆搜一发搜过去了. ...
- 「题解报告」P7301 【[USACO21JAN] Spaced Out S】
原题传送门 神奇的5分算法:直接输出样例. 20分算法 直接把每个点是否有牛的状态DFS一遍同时判断是否合法,时间复杂度约为\(O(2^{n^2})\)(因为有判断合法的剪枝所以会比这个低).而在前四 ...
随机推荐
- 在生产中部署ML前需要了解的事
在生产中部署ML前需要了解的事 译自:What You Should Know before Deploying ML in Production MLOps的必要性 MLOps之所以重要,有几个原因 ...
- 想学嵌入式?要不一起玩 Arduino 吧
作者:HelloGitHub-Anthony 这里是 HelloGitHub 推出的<讲解开源项目>系列,本期介绍的是如何用开源硬件开发平台 Arduino,自己动手做一个温湿度显示器. ...
- 一文掌握软件安全必备技术 SAST
上一篇文章中,我们讨论了软件供应链的概念并了解到近年来软件供应链安全事件层出不穷.为了保障软件供应链安全,我们需要了解网络安全领域中的一些主要技术.本篇文章将介绍其中一个重要技术--SAST. 当开发 ...
- 12.web基础与HTTP协议
web基础与HTTP协议 目录 web基础与HTTP协议 web基础 域名概述 HTML概述 HTML基本标签 HTML语法规则 HTML文件结构 头标签中常用标签 内容标签中常用标签 静态网页与动态 ...
- Kubebuilder模块
CRD创建 Group表示CRD所属的组,它可以支持多种不同版本.不同类型的资源构建,Version表示CRD的版本号,Kind表示CRD的类型 kubebuilder create api --gr ...
- Python-基础知识汇集
1.列表 列表是最常用的Python数据类型,它可以作为一个方括号内的逗号分隔值出现. 列表的数据项不需要具有相同的类型 创建一个列表,只要把逗号分隔的不同的数据项使用方括号括起来即可 代码理解:列表 ...
- ASP.NET Core 根据环境变量支持多个 appsettings.json配置文件 (开发和生产)
新建一个项目,web根目录会出现一个 appsettings.json 配置文件, 此时添加--新建项,输入 appsettings.Development.json 再新增一个,appsetti ...
- Linux关闭avahi-daemon服务
avahi-daemon是一种Linux操作系统上运行在客户机上实施查找基于网络的Zeroconf service的服务守护进程. 该服务可以为Zeroconf网络实现DNS服务发现及DNS组播规范. ...
- 线程池的概念&原理和线程池的代码实现
线程池:一个容纳多个线程的容器,其中的线程可以反复使用,省去了频繁创建线程对象的操作, 无需反复创建线程而消耗过多资源.工作原理:可以用一张图来简洁明了说明: 合理利用线程池能够带来三个好处∶1.降低 ...
- java中的内存划分和一个数组的内存图
内存概述 内存是计算机中的重要原件,临时存储区域,作用是运行程序.我们编写的程序是存放在硬盘中的,在硬盘中的程序是不会运行的,必须放进内存中才能运行,运行完毕后会清空内存 Java虚拟机要运行程序 ...