2.1    时钟来源

计数器时钟可以由下列时钟源提供:

·内部时钟(CK_INT)

·外部时钟模式1:外部输入脚(TIx)

·外部时钟模式2:外部触发输入(ETR)

·内部触发输入(ITRx):使用一个定时器作为另一个定时器的预分频器,如可以配置一个定时器Timer1而作为另一个定时器Timer2的预分频器。

由于今天的学习是最基本的定时功能,所以采用内部时钟。TIM2-TIM5的时钟不是直接来自于APB1,而是来自于输入为APB1的一个倍频器。这个倍频器的作用是:当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率(36MHZ);

当APB1的预分频系数为其他数值时(即预分频系数为2、4、8或16),这个倍频器起作用,定时器的时钟频率等于APB1的频率的2倍。

{       

        假如APB1预分频为2(变成36MHZ),则定时器TIM2-5的时钟倍频器起作用,将变成2倍的APB1(2x36MHZ)将为72MHZ给定时器提供时钟脉冲。 一般APB1和APB2的RCC时钟配置放在初始化函数中例如下面的void RCC_Configuration(void)配置函数所示,将APB1进行2分频,导致TIM2时钟变为72MHZ输入。

如果是1分频则会是36MHZ输入,如果4分频:CKINT=72MHZ/4x2=36MHZ;  8分频:CKINT=72MHZ/8x2=18MHZ;16分频:CKINT=72MHZ/16x2=9MHZ 

   }

//系统时钟初始化配置
void RCC_Configuration(void)
{
//定义错误状态变量
ErrorStatus HSEStartUpStatus;
//将RCC寄存器重新设置为默认值
RCC_DeInit();
//打开外部高速时钟晶振
RCC_HSEConfig(RCC_HSE_ON);
//等待外部高速时钟晶振工作
HSEStartUpStatus = RCC_WaitForHSEStartUp();
if(HSEStartUpStatus == SUCCESS)
{
//设置AHB时钟(HCLK)为系统时钟
RCC_HCLKConfig(RCC_SYSCLK_Div1);
//设置高速AHB时钟(APB2)为HCLK时钟
RCC_PCLK2Config(RCC_HCLK_Div1);
//设置低速AHB时钟(APB1)为HCLK的2分频(TIM2-TIM5输入TIMxCLK频率将为72MHZ/2x2=72MHZ输入)
RCC_PCLK1Config(RCC_HCLK_Div2);
//设置FLASH代码延时
FLASH_SetLatency(FLASH_Latency_2);
//使能预取指缓存
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
//设置PLL时钟,为HSE的9倍频 8MHz * 9 = 72MHz
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);
//使能PLL
RCC_PLLCmd(ENABLE);
//等待PLL准备就绪
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);
//设置PLL为系统时钟源
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
//判断PLL是否是系统时钟
while(RCC_GetSYSCLKSource() != 0x08);
}
//允许TIM2的时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);
//允许GPIO的时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
}

三、定时器代码实例

中断优先级就不贴出来了,自己可以配置下

Tout= ((arr+1)*(psc+1))/Tclk;

arr:计数重装值,psc分频数,Tclk系统时钟频率,Tout一个周期的时间。

Tout= ((arr+1)*(psc+1))/Tclk;

 3.1、定时器1使用

这里假设APB2时钟是1分频即72MHZ(如果是4分频则为36MHZ [=72MHZ/4x2=36MHZ] )配置,void RCC_Configuration(void)中配置如下代码:

1           //设置高速AHB时钟(APB2)为HCLK时钟
2 RCC_PCLK2Config(RCC_HCLK_Div1);

则这里:APB2的时钟为1分频故出来的APB2时钟还是72MHZ,TIM1对系统时钟APB2(72MHZ)再进行7200分频,然后计数重载初值设置为100,则一个定时周期Tout=(100-1+1)*(7200-1+1)/72,000,000=1/10=0.1s,即100ms为一个计数周期

1 //放到主函数的初始化中初始化
2 void Timer1CountInitial(void)
3 {
4 //定时=36000/72000x2=0.001s=1ms;
5 TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
6 ///////////////////////////////////////////////////////////////
7 RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
8
9 TIM_TimeBaseStructure.TIM_Period = 100-1;//自动重装值(此时改为100ms)
10 TIM_TimeBaseStructure.TIM_Prescaler = 7200-1;//时钟预分频
11 // TIM_TimeBaseStructure.TIM_Prescaler = 36000-1;//时钟预分频
12 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;//向上计数
13 // TIM_TimeBaseStructure.TIM_Period = 2-1;//自动重装值
14 // TIM_TimeBaseStructure.TIM_Period = 10-1;//自动重装值(此时改为10ms)
15 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //时钟分频1
16 TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;
17 TIM_TimeBaseInit(TIM1,&TIM_TimeBaseStructure);
18
19 TIM_ClearFlag(TIM1,TIM_FLAG_Update);
20 TIM_ITConfig(TIM1,TIM_IT_Update,ENABLE);
21 TIM_Cmd(TIM1, ENABLE);
22 }
23
24
25 void TIM1_UP_IRQHandler(void)
26 {
27 //TIM_TimeBaseStructure.TIM_Period = 100-1;//自动重装值(此时进中断的周期为100ms)
28 if (TIM_GetITStatus(TIM1, TIM_IT_Update) != RESET)
29 {
30 //添加行程开关去抖程序
31 if(XingChengTickNum_QuFantan<1000)//
32 {
33 XingChengTickNum_QuFantan++;
34 } 54 }
55 TIM_ClearITPendingBit(TIM1,TIM_IT_Update);58 }

3.2、定时器2使用

Tout= ((arr+1)*(psc+1))/Tclk;

arr:计数重装值,psc分频数,Tclk系统时钟频率,Tout一个周期的时间。

假设APB1时钟是2分频即72MHZ(如果是1分频则为36MHZ)配置,void RCC_Configuration(void)中配置如下代码:

//设置低速AHB时钟(APB1)为HCLK的2分频(TIM2-TIM5输入TIMxCLK频率将为72MHZ/2x2=72MHZ输入)
RCC_PCLK1Config(RCC_HCLK_Div2);

这里:APB1的时钟为分频故出来的APB2时钟还是72MHZ,TIM1是对系统时钟APB2(72MHZ)进行7200分频,

则:Tout=(4-1+1)*(36000-1+1)/72,000,000=4/2,000=2ms

void TIM2_Int_Init(void)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); TIM_DeInit(TIM2); TIM_TimeBaseStructure.TIM_Period = 4 - 1;//2000 - 1;
TIM_TimeBaseStructure.TIM_Prescaler = (36000 - 1);
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); TIM_ClearFlag(TIM2, TIM_FLAG_Update);
TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); TIM_Cmd(TIM2, ENABLE);
}
void TIM2_IRQHandler(void)
{ if(TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET)
{
interrupt_rtc();//可以使你自己定义的执行函数
}
TIM_ClearITPendingBit(TIM2, TIM_FLAG_Update);
}

3.3、定时器3使用

假设APB1时钟是2分频即72MHZ(如果是1分频则为36MHZ)配置,void RCC_Configuration(void)中配置如下代码:

1           //设置低速AHB时钟(APB1)为HCLK的2分频(TIM2-TIM5输入TIMxCLK频率将为72MHZ/2x2=72MHZ输入)
2 RCC_PCLK1Config(RCC_HCLK_Div2);
TIM3_Int_Init(4-1,36000-1);

则:Tout=(4-1+1)*(36000-1+1)/72,000,000=4/2,000=2ms

//通用定时器3中断初始化
//这里时钟选择为APB1的2倍,而APB1为36M
//arr:自动重装值。
//psc:时钟预分频数
//这里使用的是定时器3!
void TIM3_Int_Init(u16 arr,u16 psc)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
NVIC_InitTypeDef NVIC_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); //时钟使能 TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值 计数到5000为500ms
TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值 10Khz的计数频率
TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIM向上计数模式
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位 TIM_ITConfig(TIM3,TIM_IT_Update,ENABLE ); //使能指定的TIM3中断,允许更新中断 NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn; //TIM3中断
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //先占优先级0级
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //从优先级3级
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能
NVIC_Init(&NVIC_InitStructure); //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器 TIM_Cmd(TIM3, ENABLE); //使能TIMx外设 }
//定时器3中断服务程序
void TIM3_IRQHandler(void) //TIM3中断
{
if (TIM_GetITStatus(TIM3, TIM_IT_Update) != RESET) //检查指定的TIM中断发生与否:TIM 中断源
{
TIM_ClearITPendingBit(TIM3, TIM_IT_Update ); //清除TIMx的中断待处理位:TIM 中断源
LED1=!LED1;
}
}

3.4、定时器4使用

假设APB1时钟是4分频即72/4=18MHZ(如果是4分频则TIMxCLK=18MHZx2=36MHZ)配置,void RCC_Configuration(void)中配置如下代码:

1 //在void RCC_Configuration(void)中配置APB1时钟4分频或1分频都变为36MHZ
2 //设置低速AHB时钟(APB1)为HCLK的4分频(TIM2-TIM5输入TIMxCLK频率将为72MHZ/4x2=36MHZ输入)
3 RCC_PCLK1Config(RCC_HCLK_Div4);//加入使用4分频
TIM4_Int_Init(4-1,36000-1);

则:Tout=(4-1+1)*(36000-1+1)/36,000,000=4/1,000=4ms

void TIM4_Int_Init(u16 arr,u16 psc)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
NVIC_InitTypeDef NVIC_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE); //时钟使能
//定时器TIM4初始化
TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值
TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置时钟分割:TDTS = Tck_tim
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIM向上计数模式
TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure); //根据指定的参数初始化TIMx的时间基数单位
TIM_ITConfig(TIM4,TIM_IT_Update,ENABLE ); //使能指定的TIM4中断,允许更新中断 //中断优先级NVIC设置
NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn; //TIM3中断
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //先占优先级0级
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //从优先级3级
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能
NVIC_Init(&NVIC_InitStructure); //初始化NVIC寄存器 TIM_Cmd(TIM4, ENABLE); //使能TIMx
} //定时器4中断服务程序
void TIM4_IRQHandler(void) //TIM3中断
{
if (TIM_GetITStatus(TIM4, TIM_IT_Update) != RESET) //检查TIM4更新中断发生与否
{
TIM_ClearITPendingBit(TIM4, TIM_IT_Update ); //清除TIMx更新中断标志
LED0=!LED0;
// Get_Angle();
}
}

3.5、定时器5使用

假设APB1时钟是1分频即36MHZ(如果是1分频则TimexCLK=36MHZx1=36MHZ)配置,void RCC_Configuration(void)中配置如下代码:

1 //在void RCC_Configuration(void)中配置APB1时钟4分频或1分频都变为36MHZ
2 //设置低速AHB时钟(APB1)为HCLK的4分频(TIM2-TIM5输入TIMxCLK频率将为72MHZ/4x2=36MHZ输入)
3 RCC_PCLK1Config(RCC_HCLK_Div1);//假如使用1分频
TIM5_Int_Init(4-1,36000-1);

则:Tout=(4-1+1)*(36000-1+1)/36,000,000=4/1,000=4ms

void TIM5_Init(u16 arr,u16 psc)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
NVIC_InitTypeDef NVIC_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5, ENABLE); //时钟使能 TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值 计数到5000为500ms
TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值 10Khz的计数频率
TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIM向上计数模式
TIM_TimeBaseInit(TIM5, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位 TIM_ITConfig(TIM5,TIM_IT_Update,ENABLE ); //使能指定的TIM3中断,允许更新中断 NVIC_InitStructure.NVIC_IRQChannel = TIM5_IRQn; //TIM3中断
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //先占优先级0级
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //从优先级3级
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能
NVIC_Init(&NVIC_InitStructure); //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器 TIM_Cmd(TIM5, ENABLE); //使能TIMx外?
}
//定时器5中断服务程序
void TIM5_IRQHandler(void) //TIM3中断
{
if (TIM_GetITStatus(TIM5, TIM_IT_Update) != RESET) //检查指定的TIM中断发生与否:TIM 中断源
{
TIM_ClearITPendingBit(TIM5, TIM_IT_Update ); //清除TIMx的中断待处理位:TIM 中断源
LED1=!LED1;
}
}

STM32定时器(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)高级定时器+普通定时器,配置使用的更多相关文章

  1. 高级定时器TIM1&TIM8

                                               高级定时器 初识stm32高级定时器:      (1)高级控制定时器(TIM1 和 TIM8)和通用定时器在基本 ...

  2. js定时器关闭,js定时器停止,一次关闭所有正在运行的定时器,自定义函数clearIntervals()一次关闭所有正在运行的定时器

    js定时器关闭,一次关闭所有正在运行的定时器,自定义函数clearIntervals()一次关闭所有正在运行的定时器,原理:利用数组存储定时器id,然后遍历数组,关闭定时器 附上页面的截图,代码在截图 ...

  3. STM32高级定时器TIM1产生两路互补的PWM波(带死区)

    测试环境:Keil 5.20.0.0 STM32F103RBT6 固件库版本:STM32F10x_StdPeriph_Lib_V3.5.0(2011) 本文使用TIM1的通道1,通道2,产生两路1kh ...

  4. STM32开发板的TIM3开启和关闭

    关闭定时器中断要考虑好多情况 1)关闭定时器时,定时器是否在处在工作状态 2)关闭定时器时,定时器是否正好进入中断,造成关闭程序出现断层,进而无法实现完整关闭程序,此时可以使用高一级别的外部中断强制进 ...

  5. STM32输入捕获TIM2四通道

    相比于一通道,原子的例程里因为清了计数时间,所以要对程序进行修改. 记录上升沿后的计数,然后记录下降沿的计数.相减后计算高电平时间,对于定时器中断间隔的边界要分开处理. 这里因为我的接收机时间是1ms ...

  6. CC2530红外学习球学码函数(P1.2接红外一体接收头,使用定时器tim1的复用功能2)

    P1.2GPIO配置: void cap_gpio_init(){ P1SEL |= 0x04; P1DIR &= ~0x04; PERCFG |= 0x40; P2SEL |= 0x20; ...

  7. Java多线程与并发库高级应用-传统定时器技术回顾

    传统定时器技术回顾(jdk1.5以前) public class TraditionalTimerTest { static int count = 0; public static void mai ...

  8. STM32学习笔记 —— 0.1 Keil5安装和DAP仿真下载器配置的相关问题与注意事项

    Keil5安装的注意事项 安装细节在此不再做过多赘述,主要介绍一下注意事项: 安装路径中不能有中文. ARM的Keil的路径不能与51的Keil的有冲突,必须将目录分开. Keil5中不会自动添加芯片 ...

  9. STM32中TIMx的映射及其通道

    TIMx,通道x,无映射,部分映射,完全映射    TIM1_CH1, PA8,    PE9,    TIM1_CH2, PA9,    PE11    TIM1_CH3, PA10,    PE1 ...

  10. 【STM32H7教程】第34章 STM32H7的定时器应用之TIM1-TIM17的PWM实现

    完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第34章       STM32H7的定时器应用之TIM1-T ...

随机推荐

  1. Window/linux(docker) 单台宿主机部署多个Jenkins节点

    Window/linux(docker) 单台宿主机部署多个Jenkins节点 在使用Jenkins过程中,增加了手动输入的步骤,会阻塞节点运行任务: 由于资源有限,需要在一台机器挂载了很多Jenki ...

  2. TypeScript 元组

    TypeScript 元组 我们知道数组中元素的数据类型都一般是相同的(any[] 类型的数组可以不同),如果存储的元素数据类型不同,则需要使用元组. 元组中允许存储不同类型的元素,元组可以作为参数传 ...

  3. layui弹出层layer点击关闭还会显示在html中

    我的弹出层是这样定义的: 它的属性为display:none <div id="divlayer" style="display:none"> &l ...

  4. nacos之配置中心使用

    发布配置 dataId 数据的key group 组id 获取配置 通过group,dataId获取配置信息 监听配置 Listening-Configs里的值是重点,组成方式 dataId的值%02 ...

  5. RabbitMQ的全面简述讲解

    **转载自微信公众号:楼仔** 常见的消息队列很多,主要包括 RabbitMQ.Kafka.RocketMQ 和 ActiveMQ,这篇文章只讲 RabbitMQ,先讲原理,后搞实战. 思维导图: 1 ...

  6. [2004年NOIP提高组] 合并果子

    在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可以看出,所 ...

  7. 关于decimal与double数据类型

    关于double和decimal类型, double类型能表示的精度不如decimal,但是其数据范围比decimal的大. 对于double类型的字段,用sum函数会出现多位小数的情况,比如a+b+ ...

  8. 平方损失函数为例的BP的关键公式推导

    看了刘建平老师的博客https://www.cnblogs.com/pinard/p/6422831.html对如下其中两个公式进行详细推导 损失函数为(大写字母为矩阵,小写字母字母加粗为列向量,其中 ...

  9. 将Vue项目部署到Nginx中,出现的400,405,200响应空等问题处理

    最近用Vue3写了个项目,然后对接后台接口. 在本地vue配置文件中,配置了反向代理.成功请求了后端接口. 自测没有问题. 打包vue,发布到nginx中.运行nginx,成功显示了页面. 当点击页面 ...

  10. 1=C到底是哪个C