题目描述:

uoj

题解:

WTF。

看题解看了一个小时才看明白。

首先有状态$f[i][j]$表示前$i$个东西两人取,最后两人异或和为$j$的有多少方案。

转移为$f[i][j]=f[i-1][j]+2*f[i-1][j \oplus a[i]]$。

显然跑FWT做异或卷积(显然会T)。

发现卷积中每次卷的是{1,0,0,……,0,2,0……}这样一个东西。

打表发现FWT后每一项是-1或3。

其实很好解释,从贡献的角度讲,0位的贡献都是1,而$a[i]$位的贡献是2或-2,所以是3或-1。

考虑将所有的$a[i]$放在一起做FWT。

这样的话每组对每一位上的贡献是-1或3,共有$n$组,贡献和为$s$。

设贡献为$3$的有$x$组,那么$3x-(n-x)=s$,有$x=\frac{n+s}{4}$。

然后快速幂再卷回去就好了。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = 2000050;
const int MOD = 998244353;
const int inv_2 = (MOD+1)/2;
const int inv_4 = 1ll*inv_2*inv_2%MOD;
template<typename T>
inline void read(T&x)
{
T f = 1,c = 0;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){c=c*10+ch-'0';ch=getchar();}
x = f*c;
}
template<typename T>inline void Mod(T&x){if(x>=MOD)x-=MOD;}
ll fastpow(ll x,int y)
{
ll ret = 1;
while(y)
{
if(y&1)ret=ret*x%MOD;
x=x*x%MOD;y>>=1;
}
return ret;
}
int n,a[N],lim;
void fwt(int*a,int len,int k)
{
for(int i=1;i<len;i<<=1)
for(int j=0;j<len;j+=(i<<1))
for(int o=0;o<i;o++)
{
int w1 = a[j+o],w2 = a[j+o+i];
Mod(a[j+o] = w1+w2),Mod(a[j+o+i]=w1+MOD-w2);
if(k==-1)a[j+o]=1ll*a[j+o]*inv_2%MOD,a[j+o+i]=1ll*a[j+o+i]*inv_2%MOD;
}
}
int main()
{
read(n);int mx=0;
for(int i=1,x;i<=n;i++)
{
read(x);
if(x>mx)mx=x;
a[0]++,a[x]+=2;
}
lim = 1;
while(lim<=mx)lim<<=1;
fwt(a,lim,1);
for(int i=0;i<lim;i++)
{
int now = 1ll*(n+a[i])*inv_4%MOD;
a[i] = fastpow(3,now);
if((n-now)&1)a[i]=MOD-a[i];
}
fwt(a,lim,-1);
printf("%d\n",(a[0]+MOD-1)%MOD);
return 0;
}

uoj310. 【UNR #2】黎明前的巧克力的更多相关文章

  1. [UOJ310][UNR #2]黎明前的巧克力

    uoj description 给你\(n\)个数,求从中选出两个交集为空的非空集合异或和相等的方案数模\(998244353\). sol 其实也就是选出一个集合满足异或和为\(0\),然后把它分成 ...

  2. 【uoj#310】[UNR #2]黎明前的巧克力 FWT

    题目描述 给出 $n$ 个数,从中选出两个互不相交的集合,使得第一个集合与第二个集合内的数的异或和相等.求总方案数. 输入 第一行一个正整数 $n$ ,表示巧克力的个数.第二行 $n$ 个整数 $a_ ...

  3. [UOJ UNR#2 黎明前的巧克力]

    来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 很奇妙的一道题 首先不难发现一个暴力做法,就是f[i]表示异或和为i的答案数,每次FWT上一个F数组,其中F[0]=1,F[ai]=2 ...

  4. [FWT] UOJ #310. 【UNR #2】黎明前的巧克力

    [uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) F ...

  5. uoj310【UNR #2】黎明前的巧克力(FWT)

    uoj310[UNR #2]黎明前的巧克力(FWT) uoj 题解时间 对非零项极少的FWT的优化. 首先有个十分好想的DP: $ f[i][j] $ 表示考虑了前 $ i $ 个且异或和为 $ j ...

  6. 【UOJ#310】【UNR#2】黎明前的巧克力(FWT)

    [UOJ#310][UNR#2]黎明前的巧克力(FWT) 题面 UOJ 题解 把问题转化一下,变成有多少个异或和为\(0\)的集合,然后这个集合任意拆分就是答案,所以对于一个大小为\(s\)的集合,其 ...

  7. 「UNR#2」黎明前的巧克力

    「UNR#2」黎明前的巧克力 解题思路 考虑一个子集 \(S\) 的异或和如果为 \(0\) 那么贡献为 \(2^{|S|}\) ,不难列出生产函数的式子,这里的卷积是异或卷积. \[ [x^0]\p ...

  8. 【UNR #2】黎明前的巧克力 解题报告

    [UNR #2]黎明前的巧克力 首先可以发现,等价于求 xor 和为 \(0\) 的集合个数,每个集合的划分方案数为 \(2^{|S|}\) ,其中 \(|S|\) 为集合的大小 然后可以得到一个朴素 ...

  9. UOJ #310 黎明前的巧克力 FWT dp

    LINK:黎明前的巧克力 我发现 很多难的FWT的题 都和方程有关. 上次那个西行寺无余涅槃 也是各种解方程...(不过这个题至今还未理解. 考虑dp 容易想到f[i][j][k]表示 第一个人得到巧 ...

  10. UOJ310. 【UNR #2】黎明前的巧克力 [FWT]

    UOJ 思路 显然可以转化一下,变成统计异或起来等于0的集合个数,这样一个集合的贡献是\(2^{|S|}\). 考虑朴素的\(dp_{i,j}\)表示前\(i\)个数凑出了\(j\)的方案数,发现这其 ...

随机推荐

  1. Solution -「51nod 1868」彩色树

    \(\mathcal{Description}\)   Link & 双倍经验 Link.   给定一棵 \(n\) 个结点的树,每个结点有一种颜色.记 \(g(u,v)\) 表示 \(u\) ...

  2. 聊聊几个阿里 P8、P9 程序员的故事

    大家好,我是对白. 阿里 P8 程序员年薪百万已经是公开的秘密了,有人关心他们年薪百万,而我更加关注阿里这些 P8.P9 程序员的成长故事,在聊这些大牛的故事之前,跟大家稍微简单聊下阿里技术人等级制度 ...

  3. seaborn学习笔记(四):箱型图、小提琴图

    html { font-family: sans-serif; -ms-text-size-adjust: 100%; -webkit-text-size-adjust: 100% } body { ...

  4. rar解压密码破解软件工具下载

    软件已激活,下载即可使用 下载地址: https://dl.winzf.com/25_794.html 软件介绍现在市面商的rar压缩包破解软件的原理都是,输入密码一个一个尝试,然后得出压缩包正确密码 ...

  5. Python-Flask框架之"图书管理系统"项目,附详解源代码及页面效果截图

    该图书管理系统要实现的功能如下: 1. 可以通过添加窗口添加书籍或作者,如果要添加的作者和书籍已存在于书架上, 则给出相应的提示: 2. 如果要添加的作者存在,而要添加的书籍书架上没有,则将该书籍添加 ...

  6. 设计DFA接受{0,1}上的字符串ω,且ω是3倍数的二进制表示

    DFA设计 设计DFA接受{0,1}上的字符串ω,且ω是3倍数的二进制表示 先叙述下思路: 要想证明某数是3的倍数可以让其除以3看余数是否为零即可,现在我们的问题就是如何计算一串二进制数除以3所得的余 ...

  7. kali linux开启ssh

    虚拟机中安装好Kali linux 2.0,如何从windows中通过SecureCRT.putty或XShell等工具远程到Kali中. [GeeK]出诊过程如下: 1.首先在window10中te ...

  8. 【windows 访问控制】七、window 访问控制编辑器(Access Control Editor)

    window 访问控制编辑器(Access Control Editor) 右键(文件.目录.程序)>选择属性>安全>高级   进入访问控制编辑器

  9. Pycharm:一直connecting to console的解决办法

    方法一: 1.打开Anaconda cmd(也就是Anaconda Prompt,在启动栏Anaconda目录里应该有)2.输入echo %PATH% 获得PATH value3.在PyCharm中, ...

  10. Python:在命令行窗口中运行Python程序

    首先通过cd进入程序所在目录下 再通过python或者python3加要运行的python文件即可