uoj310. 【UNR #2】黎明前的巧克力
题目描述:
题解:
WTF。
看题解看了一个小时才看明白。
首先有状态$f[i][j]$表示前$i$个东西两人取,最后两人异或和为$j$的有多少方案。
转移为$f[i][j]=f[i-1][j]+2*f[i-1][j \oplus a[i]]$。
显然跑FWT做异或卷积(显然会T)。
发现卷积中每次卷的是{1,0,0,……,0,2,0……}这样一个东西。
打表发现FWT后每一项是-1或3。
其实很好解释,从贡献的角度讲,0位的贡献都是1,而$a[i]$位的贡献是2或-2,所以是3或-1。
考虑将所有的$a[i]$放在一起做FWT。
这样的话每组对每一位上的贡献是-1或3,共有$n$组,贡献和为$s$。
设贡献为$3$的有$x$组,那么$3x-(n-x)=s$,有$x=\frac{n+s}{4}$。
然后快速幂再卷回去就好了。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = 2000050;
const int MOD = 998244353;
const int inv_2 = (MOD+1)/2;
const int inv_4 = 1ll*inv_2*inv_2%MOD;
template<typename T>
inline void read(T&x)
{
T f = 1,c = 0;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){c=c*10+ch-'0';ch=getchar();}
x = f*c;
}
template<typename T>inline void Mod(T&x){if(x>=MOD)x-=MOD;}
ll fastpow(ll x,int y)
{
ll ret = 1;
while(y)
{
if(y&1)ret=ret*x%MOD;
x=x*x%MOD;y>>=1;
}
return ret;
}
int n,a[N],lim;
void fwt(int*a,int len,int k)
{
for(int i=1;i<len;i<<=1)
for(int j=0;j<len;j+=(i<<1))
for(int o=0;o<i;o++)
{
int w1 = a[j+o],w2 = a[j+o+i];
Mod(a[j+o] = w1+w2),Mod(a[j+o+i]=w1+MOD-w2);
if(k==-1)a[j+o]=1ll*a[j+o]*inv_2%MOD,a[j+o+i]=1ll*a[j+o+i]*inv_2%MOD;
}
}
int main()
{
read(n);int mx=0;
for(int i=1,x;i<=n;i++)
{
read(x);
if(x>mx)mx=x;
a[0]++,a[x]+=2;
}
lim = 1;
while(lim<=mx)lim<<=1;
fwt(a,lim,1);
for(int i=0;i<lim;i++)
{
int now = 1ll*(n+a[i])*inv_4%MOD;
a[i] = fastpow(3,now);
if((n-now)&1)a[i]=MOD-a[i];
}
fwt(a,lim,-1);
printf("%d\n",(a[0]+MOD-1)%MOD);
return 0;
}
uoj310. 【UNR #2】黎明前的巧克力的更多相关文章
- [UOJ310][UNR #2]黎明前的巧克力
uoj description 给你\(n\)个数,求从中选出两个交集为空的非空集合异或和相等的方案数模\(998244353\). sol 其实也就是选出一个集合满足异或和为\(0\),然后把它分成 ...
- 【uoj#310】[UNR #2]黎明前的巧克力 FWT
题目描述 给出 $n$ 个数,从中选出两个互不相交的集合,使得第一个集合与第二个集合内的数的异或和相等.求总方案数. 输入 第一行一个正整数 $n$ ,表示巧克力的个数.第二行 $n$ 个整数 $a_ ...
- [UOJ UNR#2 黎明前的巧克力]
来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 很奇妙的一道题 首先不难发现一个暴力做法,就是f[i]表示异或和为i的答案数,每次FWT上一个F数组,其中F[0]=1,F[ai]=2 ...
- [FWT] UOJ #310. 【UNR #2】黎明前的巧克力
[uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) F ...
- uoj310【UNR #2】黎明前的巧克力(FWT)
uoj310[UNR #2]黎明前的巧克力(FWT) uoj 题解时间 对非零项极少的FWT的优化. 首先有个十分好想的DP: $ f[i][j] $ 表示考虑了前 $ i $ 个且异或和为 $ j ...
- 【UOJ#310】【UNR#2】黎明前的巧克力(FWT)
[UOJ#310][UNR#2]黎明前的巧克力(FWT) 题面 UOJ 题解 把问题转化一下,变成有多少个异或和为\(0\)的集合,然后这个集合任意拆分就是答案,所以对于一个大小为\(s\)的集合,其 ...
- 「UNR#2」黎明前的巧克力
「UNR#2」黎明前的巧克力 解题思路 考虑一个子集 \(S\) 的异或和如果为 \(0\) 那么贡献为 \(2^{|S|}\) ,不难列出生产函数的式子,这里的卷积是异或卷积. \[ [x^0]\p ...
- 【UNR #2】黎明前的巧克力 解题报告
[UNR #2]黎明前的巧克力 首先可以发现,等价于求 xor 和为 \(0\) 的集合个数,每个集合的划分方案数为 \(2^{|S|}\) ,其中 \(|S|\) 为集合的大小 然后可以得到一个朴素 ...
- UOJ #310 黎明前的巧克力 FWT dp
LINK:黎明前的巧克力 我发现 很多难的FWT的题 都和方程有关. 上次那个西行寺无余涅槃 也是各种解方程...(不过这个题至今还未理解. 考虑dp 容易想到f[i][j][k]表示 第一个人得到巧 ...
- UOJ310. 【UNR #2】黎明前的巧克力 [FWT]
UOJ 思路 显然可以转化一下,变成统计异或起来等于0的集合个数,这样一个集合的贡献是\(2^{|S|}\). 考虑朴素的\(dp_{i,j}\)表示前\(i\)个数凑出了\(j\)的方案数,发现这其 ...
随机推荐
- JVM学习——字节码(学习过程)
JVM--字节码 为什么要学字节码 字节码文件,有什么用? JVM虚拟机的特点:一处编译,多处运行. 多处运行,靠的是.class 字节码文件. JVM本身,并不是跨平台的.Java之所以跨平台,是因 ...
- Owin Katana 的分析介绍
本文首要是对美团的分布式ID结构Leaf的原理进行介绍,针对Leaf原项目中的一些issue,对Leaf项目进行功用增强,问题修正及优化改善,改善后的项目地址在这里: Leaf项目改善计划 https ...
- 【第一期百题计划进行中,快来打卡学习】吃透java、细化到知识点的练习题及笔试题,助你轻松搞定java
[快来免费打卡学习]参与方式 本期百题计划开始时间:2022-02-09,今日打卡题已在文中标红. 0.本文文末评论区打卡,需要登录才可以打卡以及查看其他人的打卡记录 1.以下练习题,请用对应的知识点 ...
- 关于 Word2Vec 使用时遇到的一系列问题!!
1 训练时 model = Word2Vec(x, size=250, window=5, min_count=5, workers=12, iter=10, sg=1) 这句代码一直报错 查了 ...
- 【C# Parallel】开端
使用条件 1.必须熟练掌握锁.死锁.task的知识,他是建立这两个的基础上的.task建立在线程和线程池上的. 2.并不是所有代码都适合并行化. 例如,如果某个循环在每次迭代时只执行少量工作,或它在很 ...
- 【C#基础概念】命名规范
1. 引言 本文是一套面向C# programmer 和C# developer 进行开发所应遵循的开发规范. 按照此规范来开发C#程序可带来以下益处: · 代码的编写保持一致性, · ...
- 『无为则无心』Python日志 — 65、日志模块logging的使用
目录 1.logger类用法 2.handler类用法 3.formatter类用法 4.filter类用法 1.logger类用法 logger类:logger用于提供日志接口,常用于配置和发送日志 ...
- 一张图看懂IaaS, PaaS和SaaS的区别
转至:https://blog.csdn.net/liujg79/article/details/84453736 编译:老夫子 原文:https://www.bmc.com/blogs/saas-v ...
- Zookeeper集群搭建及原理
1 概述 1.1 简介 ZooKeeper 是 Apache 的一个顶级项目,为分布式应用提供高效.高可用的分布式协调服务,提供了诸如数据发布/订阅.负载均衡.命名服务.分布式协调/通知和分布式锁等分 ...
- 《Selenium+Pytest Web自动化实战》视频试听课程
环境准备 1.1 python3环境安装 1.2 selenium3和chrome环境 1.3 pycharm安装 webdriver API 2.1基本操作 2.2元素定位id_name_class ...