题目描述

在同学们的努力下, 高匀感受到了 alb 的快乐。

高勺意犹未尽,找来了一个长度为 nn 的序列 a_1,a_2,….,a_na1​,a2​,….,an​ 。

她想要删除这个序列中的 kk 个数,然后将剩下的数按下标从小到大排列成一个长度为 n-kn−k 的序列 b_1,b_2,...,b_{n-k}b1​,b2​,...,bn−k​。

高勺定义她的快乐度为 bb 序列中满足 b_i=ibi​=i 的数量,即 \sum_{i=1}^{n-k} [b_i=i]∑i=1n−k​[bi​=i] 。

高勺想知道她的快乐度的最大值为多少。

输入格式

第一行两个整数 n,k,n,k,表示序列的长度和删掉数的个数。

第二行 nn 个整数 a_iai​,表示杰哥的序列。

输出格式

输出一个整数,表示 \sum_{i=1}^{n-k} [b_i=i]∑i=1n−k​[bi​=i] 的最大值

DP暴力的话可以得40~50分。考虑正解:

对于一个数ai+x=i,只有当他前面的数删去x过后才会产生1的贡献,我们将原数列按照数值递增,数值相等时位置递减排序,用c[x]维护删去x个数的最大贡献,加入一个数ax,他要产生贡献的话要删去x-ax个数,查询前缀的最大值并由此转移,我们需要一个单点修改和查询前缀max的数据结构,所以用树状数组。

 1 #include <bits/stdc++.h>
2 #define N 500005
3 #define fi first
4 #define se second
5 #define pi pair<int, int>
6 //#define loveGsy
7 using namespace std;
8 int a[N], n, k, ans, c[N];
9 pair<int, int> b[N];
10 void add(int x, int v) {
11 x++;
12 for (; x <= n; x += x & (-x)) c[x] = max(c[x], v);
13 }
14 int query(int x) {
15 x++;
16 int s = 0;
17 for (; x; x -= x & (-x)) s = max(s, c[x]);
18 return s;
19 }
20 void solve(int x) {
21 if (a[x] > x) return ;
22 int res = query(x - a[x]) + 1;//从前缀转移
23 add(x - a[x], res);
24 if (x - a[x] <= k && a[x] <= n - k) ans = max(ans, res);
25 }
26 bool cmp(pi a, pi b) {
27 return (a.fi ^ b.fi) ? a.fi < b.fi : a.se > b.se;
28 }
29 int main() {
30 #ifdef loveGsy
31 freopen("tree.in", "r", stdin);
32 freopen("tree.out", "w", stdout);
33 #endif
34 scanf("%d %d", &n, &k);
35 for (int i = 1; i <= n; i++) {
36 scanf("%d", a + i);
37 b[i] = make_pair(a[i], i);
38 }
39 sort(b + 1, b + n + 1, cmp);
40 for (int i = 1; i <= n; i++) solve(b[i].second);
41 printf("%d\n", ans);
42 return 0;
43 }

220726 T3 最优化问题 (树状数组)的更多相关文章

  1. 2016 10 28考试 dp 乱搞 树状数组

    2016 10 28 考试 时间 7:50 AM to 11:15 AM 下载链接: 试题 考试包 这次考试对自己的表现非常不满意!! T1看出来是dp题目,但是在考试过程中并没有推出转移方程,考虑了 ...

  2. 模拟赛 T3 DFS序+树状数组+树链的并+点权/边权技巧

    题意:给定一颗树,有 $m$ 次操作. 操作 0 :向集合 $S$ 中加入一条路径 $(p,q)$,权值为 $v$ 操作 1 :给定一个点集 $T$,求 $T$ 的并集与 $S$ 中路径含交集的权和. ...

  3. 【树状数组】BZOJ3132 上帝造题的七分钟

    3132: 上帝造题的七分钟 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1004  Solved: 445[Submit][Status][Dis ...

  4. Gym102082 G-What Goes Up Must Come Down(树状数组)

    Several cards with numbers printed on them are lined up on the table. We’d like to change their orde ...

  5. 2018牛客网暑期ACM多校训练营(第一场)J Different Integers(树状数组)

    题意 给出一串数字以及q次查询,每次查询l,r],要求求出[1,l]和[r,n]的所有不相同的数字个数. 分析 先对数组进行倍增,变为两倍长,然后查询就变成一个完整的区间.离线处理,按r从小到大排序, ...

  6. hdu5293 lca+dp+树状数组+时间戳

    题意是给了 n 个点的树,会有m条链条 链接两个点,计算出他们没有公共点的最大价值,  公共点时这样计算的只要在他们 lca 这条链上有公共点的就说明他们相交 dp[i]为这个点包含的子树所能得到的最 ...

  7. 洛谷P3368 树状数组2 树状数组+差分

    正解:树状数组+差分 解题报告: 戳我! 不得不说灵巧真滴是越来越弱了...连模板题都要放上来了QAQ 因为今天考试的T3正解要用到树状数组这才惊觉树状数组掌握得太太太太差了...之前一直靠线段树续着 ...

  8. 二维树状数组+差分【p4514】上帝造题的七分钟

    Description "第一分钟,X说,要有矩阵,于是便有了一个里面写满了\(0\)的\(n\times m\)矩阵. 第二分钟,L说,要能修改,于是便有了将左上角为\((a,b)\),右 ...

  9. 【bzoj4889】[Tjoi2017]不勤劳的图书管理员 树状数组+分块+二分

    题目描述(转自洛谷) 加里敦大学有个帝国图书馆,小豆是图书馆阅览室的一个书籍管理员.他的任务是把书排成有序的,所以无序的书让他产生厌烦,两本乱序的书会让小豆产生这两本书页数的和的厌烦度.现在有n本被打 ...

随机推荐

  1. 题解 洛谷 P2388 阶乘之乘

    目录 简要题意 题解 主要思路 一个 \(\omega(n)\) 的算法 一个 \(O(\log n)\) 的算法 一个算法 代码 算法 \(1\)(\(\omega(n)\)) 算法 \(2\) 算 ...

  2. MySQL建表DDL规范(欢迎补充)

    MySQL建表DDL规范(欢迎补充) 基本规范: 表名和字段名全大写,一般表名以T开头 脚本需支持可重复执行,带IF NOT EXISTS ,但不可带DROP语句 字符集使用utf8mb4 (CHAR ...

  3. 自动提交本地git仓库脚本

    #! /bin/bash git_user_name=`git config user.name` git_user_mail=`git config user.email` branch_name= ...

  4. Java8新特性: lambda 表达式介绍

    一.lambda 表达式介绍 lambda 表达式是 Java 8 的一个新特性,可以取代大部分的匿名内部类,简化了匿名委托的使用,让你让代码更加简洁,优雅. 比较官方的定义是这样的: lambda ...

  5. 过年好,新一代大数据任务调度系统 - Apache DolphinScheduler 1.3.5 发布

    节后上班第一天,新一代大数据任务调度 - Apache DolphinScheduler(incubator) 就迎来了好消息 - 在社区 20 多位小伙伴的贡献与努力下,社区发布了 1.3.5 版本 ...

  6. a 标签 rel 属性值 opener 的作用

    <a> 元素,原英文单词为 anchor 的缩写,所以又称之为锚点元素.锚点元素的 href 属性用来创建通向其他网页.文件.同一页面内的位置.电子邮件地址或任何其他 URL 的超链接. ...

  7. Word修订内容批量标红

    最近改文章,期刊要求提供所有修改内容都标红的修订稿,本着能不手改就不手改的原则,我尝试检索了一下自动修改的方法,最先找到的是简书上的一篇使用VB宏命令批量修改的文章 (Word-接受全部修订为标红字体 ...

  8. 使用VS Code 搭建 platformio 平台

    一.需要的资源网站 arduino GitHub:https://github.com/arduino espressif GitHub:https://github.com/espressif pl ...

  9. 关于DOS命令窗口的一点基本知识

    1.DOS命令窗口又可称为CMD窗口.shell.终端. 2.常用的DOS命令: -硬盘分区名+: :进入到该硬盘分区(注意是英文冒号哦) -cd+目录名:进入到指定(该)目录 -dir:列出当前目录 ...

  10. SUSE Linux Enterprise Server 12 使用二进制文件安装docker

    Docker-CE in SUSE 虽然使用zypper添加源也能安装,不过我在SLES 12sp5 上安装时发现好多命令还需要自己手动软连接,干脆网上找了找文档,再自己小改下,用二进制部署,也是可以 ...