1. 背景

本qiang~这两天接了一个任务,部署几个开源的模型,并且将本地经过全量微调的模型与开源模型做一个效果对比。

部署的开源模型包括:星火13B,Baichuan2-13B, ChatGLM6B等

其他两个模型基于transformers架构封装,因此推理服务启动还是十分丝滑,但星火13B是基于Megatron-DeepSpeed框架实现,地址是:https://gitee.com/iflytekopensource/iFlytekSpark-13B,启动推理服务的过程中发现启动13B的显卡占用71G-78G,有些反直觉。

此文就是整理开源星火13B的显存及内存排查并优化的整理过程,至于哪家开源模型效果好,不在此文的讨论范围内。

2. 原因分析

直观上来说,13B的模型,数据类型为bf16,显卡占用大概在26G左右,但星火13B直接占用70G+,不可思议,怪不得网上关于星火开源模型的讨论少之又少,原因显而易见,这么大的显存占用只能用多卡或者A800等80G显卡才能适配。穷人家的孩子,哪有这么多余粮。

排查原因的过程中,少不了源码的调试与分析。在排查的过程中,启动推理服务的文件run_iFlytekSpark_text_generation.py中,model_provider方法是初始化模型并加载模型文件的方法。

def model_provider(pre_process=True, post_process=True):
"""Build the model."""
print_rank_0('building iFlytekSpark model ...')
args = get_args()
config = core_transformer_config_from_args(args) ### 初始化星火模型
model = iFlytekSparkModel(
config,
num_tokentypes=0,
parallel_output=False,
pre_process=pre_process,
post_process=post_process,
return_moe_loss=False
) if args.from_pretrained is not None:
assert os.path.exists(args.from_pretrained)
ckpt_path = get_checkpoint_name(args.from_pretrained)
print_rank_0('Loading from {} '.format(
args.from_pretrained))
# 模型加载权重文件
state_dict = torch.load(ckpt_path, map_location=f"cuda:{torch.cuda.current_device()}")
if 'module' in state_dict:
state_dict = state_dict['module']
model.load_state_dict(state_dict)
return model

其中,加载权重文件可以看到,加载state_dict时,直接将权重文件加载到显卡中,而非加载至CPU,然后再执行to方法,转移到GPU。因此该处是一个潜在的优化点。

再打入iFlytekSparkModel内部,词表Embedding层,线性转换层,等初始化weight时,也是直接将weight分配在GPU上运行。例如下例:

class RowParallelLinear(torch.nn.Module):
def __init__(self, input_size: int, output_size: int, *,
config: ModelParallelConfig,
init_method: Callable,
bias: bool = True,
input_is_parallel: bool = False,
stride: int = 1,
keep_master_weight_for_test: bool = False,
skip_bias_add: bool = False,
moe=False, enable_expert_tensor_parallelism=False):
super(RowParallelLinear, self).__init__() # ......... if config.use_cpu_initialization:
self.weight = Parameter(torch.empty(self.output_size,
self.input_size_per_partition,
dtype=config.params_dtype))
if config.perform_initialization:
self.master_weight = _initialize_affine_weight_cpu(
self.weight, self.output_size, self.input_size,
self.input_size_per_partition, 1, init_method,
stride=stride, return_master_weight=keep_master_weight_for_test,
params_dtype=config.params_dtype)
else:
# 默认按照启动sh命令,会走该分支
self.weight = Parameter(torch.empty(
self.output_size, self.input_size_per_partition,
device=get_accelerator().current_device_name(), dtype=config.params_dtype))
if config.perform_initialization:
_initialize_affine_weight_gpu(self.weight, init_method,
partition_dim=1, stride=stride)
if bias:
if config.use_cpu_initialization:
self.bias = Parameter(torch.empty(self.output_size,
dtype=config.params_dtype))
else:
# 默认按照启动sh命令,会走该分支
self.bias = Parameter(torch.empty(
self.output_size, device=get_accelerator().current_device_name(),
dtype=config.params_dtype))
setattr(self.bias, 'sequence_parallel', self.sequence_parallel) if config.perform_initialization:
# Always initialize bias to zero.
with torch.no_grad():
self.bias.zero_()
else:
self.register_parameter('bias', None) 

3. 优化方案

1. 模型初始化时,模型的Embedding,线性层的权重weight均直接加载至GPU,因此可以优化为先将这些weight加载至CPU。

改进的方式也很简单,从上面的源码层面,可以看到,当增加参数” use_cpu_initialization”,将使用CPU进行初始化权重,因此只需要在启动推理服务的脚本中增加” --use-cpu-initialization”参数即可。

2. 加载模型文件时,直接加载至GPU,然后run_iFlytekSpark_text_generation.py中的get_model方法中,当模型加载完成后,会进行分配至GPU以及FP16的转换的操作。如下代码所示。

def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
"""Build the model."""
args = get_args()
args.model_type = model_type # .......... # GPU allocation.
for model_module in model:
model_module.to(get_accelerator().current_device_name()) # Fp16 conversion.
if args.fp16 or args.bf16:
model = [Float16Module(model_module, args) for model_module in model] # ....... return model

因此,优化的方式也很简单,可以优化为先加载至CPU,再运行get_model中的默认分配至GPU,加载完后,再使用垃圾回收机制清除CPU占用的内存即可。

话不多说,优化后的代码如下:

def model_provider(pre_process=True, post_process=True):
"""Build the model."""
print_rank_0('building iFlytekSpark model ...')
args = get_args()
config = core_transformer_config_from_args(args)
model = iFlytekSparkModel(
config,
num_tokentypes=0,
parallel_output=False,
pre_process=pre_process,
post_process=post_process,
return_moe_loss=False
) if args.from_pretrained is not None:
print(args.from_pretrained)
assert os.path.exists(args.from_pretrained)
ckpt_path = get_checkpoint_name(args.from_pretrained)
print_rank_0('Loading from {} '.format(
args.from_pretrained)) # state_dict = torch.load(ckpt_path, map_location=f"cuda:{torch.cuda.current_device()}")
# CPU进行加载
state_dict = torch.load(ckpt_path, map_location=f"cpu")
if 'module' in state_dict:
state_dict = state_dict['module']
model.load_state_dict(state_dict) # 加载完成,删除state_dict,并垃圾回收
del state_dict
gc.collect()
torch.cuda.empty_cache() return model

4. 效果对比

(1) 优化前的显卡占用: 71.5G

(2) 优化前的内存占用: 虚拟内存占用94.5G

(3) 优化后的显卡占用: 26G

(4) 优化后的内存占用: 43.1G

5. 总结

一句话足矣~

本文主要是针对开源星火13B的显存及内存占用过大的一个代码优化。核心思想是使用CPU预加载模型,再转换至GPU。

后期如有遇到此类问题,可以借鉴之~

LLM优化:开源星火13B显卡及内存占用优化的更多相关文章

  1. mariadb 内存占用优化

    本文由云+社区发表 作者:工程师小熊 摘要:我们在使用mariadb的时候发现有时候不能启动起来,在使用过程中mariadb占用的内存很大,在这里学习下mariadb与内存相关的配置项,对mariad ...

  2. es 内存占用优化

    对6.3: 修改Elasticsearch中JVM配置文件jvm.options: Dlog4j2.enable.threadlocals=false 注: 本文主要针对ES 2.x. “该给ES分配 ...

  3. EasyDarwin开源流媒体服务器内存管理优化

    -本文由EasyDarwin开源团队成员Fantasy贡献 前言 最近在linux上跑EasyDarwin发现一个很奇怪的问题,当有RTSPSession连接上来的时候,发现进程的虚拟内存映射一下就多 ...

  4. 【转载】Unity 优雅地管理资源,减少占用内存,优化游戏

    转自:星辰的<Unity3D占用内存太大的解决方法> 最近网友通过网站搜索Unity3D在手机及其他平台下占用内存太大. 这里写下关于Unity3D对于内存的管理与优化. Unity3D  ...

  5. android app性能优化大汇总(内存性能优化)

    转载请注明本文出自大苞米的博客(http://blog.csdn.net/a396901990),谢谢支持! 写在最前: 本文的思路主要借鉴了2014年AnDevCon开发者大会的一个演讲PPT,加上 ...

  6. Java内存溢出优化性能优化

    高性能应用构成了现代网络的支柱.LinkedIn有许多内部高吞吐量服务来满足每秒数千次的用户请求.要优化用户体验,低延迟地响应这些请求非常重要. 比如说,用户经常用到的一个功能是了解动态信息——不断更 ...

  7. 感悟优化——Netty对JDK缓冲区的内存池零拷贝改造

    NIO中缓冲区是数据传输的基础,JDK通过ByteBuffer实现,Netty框架中并未采用JDK原生的ByteBuffer,而是构造了ByteBuf. ByteBuf对ByteBuffer做了大量的 ...

  8. Java解读内存,优化编程

    1.别用new Boolean 在很多场景中Boolean类型是必须的,比如JDBC中boolean类型的set与get都是通过Boolean封装传递的,大部分ORM也是用Boolean来封装bool ...

  9. Redis内存使用优化与存储

    抄自http://www.infoq.com/cn/articles/tq-redis-memory-usage-optimization-storage 本文将对Redis的常见数据类型的使用场景以 ...

  10. Android内存性能优化(内部资料总结)

    eoe上看到的一个很好的文章 摘抄了下来留着自己看看 刚入门的童鞋肯能都会有一个疑问,Java不是有虚拟机了么,内存会自动化管理,我们就不必要手动的释放资源了,反正系统会给我们完成.其实Java中没有 ...

随机推荐

  1. ElasticSearch分页查询的实现

    1.设置mapping PUT /t_order { "settings": { "number_of_shards": 1, "number_of_ ...

  2. MySQL8.0 ERROR 1045 (28000)

    第一步:关闭服务 net stop mysql 这个需要在管理员权限才行 ,具体怎么用管理员打开cmd略过 第二步:进入到安装的bin目录 执行 :mysqld --console --skip-gr ...

  3. 学习Python前要了解的tips

    学习Python前要了解的tips 对后续的学习来说很重要,否则后续会出现一些奇奇怪怪的问题,而且很难找到解决方法.嘿嘿,就不要问我怎么知道的了吧,好多都是我踩过的坑 卸载电脑内软件 之前我一直用电脑 ...

  4. Python 潮流周刊第 44 期(摘要)+ 赠书 5 本《明解Python算法与数据结构》

    本周刊由 Python猫 出品,精心筛选国内外的 250+ 信息源,为你挑选最值得分享的文章.教程.开源项目.软件工具.播客和视频.热门话题等内容.愿景:帮助所有读者精进 Python 技术,并增长职 ...

  5. LeetCode 3093. 最长公共后缀查询 (二分法)

    LeetCode 3093. 最长公共后缀查询 1 题目描述 给你两个字符串数组 wordsContainer 和 wordsQuery . 对于每个 wordsQuery[i] ,你需要从 word ...

  6. list集合中的实现类ArrayList

    如上图所示,list集合是 Collection 接口的子接口,它是一个元素有序(每个元素都有对应的顺序索引,第一个元素索引为0).且可重复的集合,他有三个实现类,如下: ArrayList add方 ...

  7. VS2022+QT5.14.2开发VS QT Tool的使用

    1.安装环境vs2022+QT5.14.2 qt vs tool (vsaddin)的使用遇到的坑 1.安装qt-vsaddin-msvc2022-3.0.2.vsix 安装失败 2.安装qt-vsa ...

  8. 01 jQuery初使用

    01 jQuery初使用 jQuery是一个曾经火遍大江南北的一个Javascript的第三方库. jQuery的理念: write less do more. 其含义就是让前端程序员从繁琐的js代码 ...

  9. 11 CSS盒子模型(重点)

    11 CSS盒子模型(重点) 盒模型是CSS的核心知识点之一,它指定元素如何显示以及如何相互交互.HTML页面上的每个元素都可以看成一个个方盒子,这些盒子由元素的content(内容).padding ...

  10. HTTPS加密套件的笔记

    本文于2016年5月份完成,发布在个人博客网站上. 考虑个人博客因某种原因无法修复,于是在博客园安家,之前发布的文章逐步搬迁过来. 按照如下配置(适用于Tomcat 7.0.x),为Tomcat启用了 ...