TURBOSTAT(8) System Manager's Manual TURBOSTAT(8)

NAME

turbostat - Report processor frequency and idle statistics

SYNOPSIS

turbostat [Options] command
turbostat [Options] [--interval seconds]

DESCRIPTION

turbostat reports processor topology, frequency, idle power-state statistics, temperature and power on X86 processors. There are two ways to invoke turbostat. The first method is to supply a command, which is forked and statistics are printed in one-shot upon its completion. The second method is to omit the command, and turbostat displays statistics every 5 seconds interval. The 5-second interval can be changed using the --interval option.

Some information is not available on older processors.

Options

Options can be specified with a single or double '-', and only as much of the option name as necessary to disambiguate it from others is necessary. Note that options are case-sensitive.

--add attributes add column with counter having specified 'attributes'. The 'location' attribute is required, all others are optional.

	location: {msrDDD | msr0xXXX | /sys/path...}
msrDDD is a decimal offset, eg. msr16
msr0xXXX is a hex offset, eg. msr0x10
/sys/path... is an absolute path to a sysfs attribute
scope: {cpu | core | package}
sample and print the counter for every cpu, core, or package.
default: cpu
size: {u32 | u64 }
MSRs are read as 64-bits, u32 truncates the displayed value to 32-bits.
default: u64
format: {raw | delta | percent}
'raw' shows the MSR contents in hex.
'delta' shows the difference in values during the measurement interval.
'percent' shows the delta as a percentage of the cycles elapsed.
default: delta
name: "name_string"
Any string that does not match a key-word above is used
as the column header.

--cpu cpu-set limit output to system summary plus the specified cpu-set. If cpu-set is the string "core", then the system summary plus the first CPU in each core are printed -- eg. subsequent HT siblings are not printed. Or if cpu-set is the string "package", then the system summary plus the first CPU in each package is printed. Otherwise, the system summary plus the specified set of CPUs are printed. The cpu-set is ordered from low to high, comma delimited with ".." and "-" permitted to denote a range. eg. 1,2,8,14..17,21-44

--hide column do not show the specified built-in columns. May be invoked multiple times, or with a comma-separated list of column names.

--enable column show the specified built-in columns, which are otherwise disabled, by default. Currently the only built-in counters disabled by default are "usec", "Time_Of_Day_Seconds", "APIC" and "X2APIC". The column name "all" can be used to enable all disabled-by-default built-in counters.

--show column show only the specified built-in columns. May be invoked multiple times, or with a comma-separated list of column names.

--show CATEGORY --hide CATEGORY Show and hide also accept a single CATEGORY of columns: "all", "topology", "idle", "frequency", "power", "sysfs", "other".

--Dump displays the raw counter values.

--quiet Do not decode and print the system configuration header information.

--interval seconds overrides the default 5.0 second measurement interval.

--num_iterations num number of the measurement iterations.

--out output_file turbostat output is written to the specified output_file. The file is truncated if it already exists, and it is created if it does not exist.

--help displays usage for the most common parameters.

--Joules displays energy in Joules, rather than dividing Joules by time to print power in Watts.

--list display column header names available for use by --show and --hide, then exit.

--Summary limits output to a 1-line System Summary for each interval.

--TCC temperature sets the Thermal Control Circuit temperature for systems which do not export that value. This is used for making sense of the Digital Thermal Sensor outputs, as they return degrees Celsius below the TCC activation temperature.

--version displays the version.

The command parameter forks command, and upon its exit, displays the statistics gathered since it was forked.

ROW DESCRIPTIONS

The system configuration dump (if --quiet is not used) is followed by statistics. The first row of the statistics labels the content of each column (below). The second row of statistics is the system summary line. The system summary line has a '-' in the columns for the Package, Core, and CPU. The contents of the system summary line depends on the type of column. Columns that count items (eg. IRQ) show the sum across all CPUs in the system. Columns that show a percentage show the average across all CPUs in the system. Columns that dump raw MSR values simply show 0 in the summary. After the system summary row, each row describes a specific Package/Core/CPU. Note that if the --cpu parameter is used to limit which specific CPUs are displayed, turbostat will still collect statistics for all CPUs in the system and will still show the system summary for all CPUs in the system.

COLUMN DESCRIPTIONS

usec For each CPU, the number of microseconds elapsed during counter collection, including thread migration -- if any.  This counter is disabled by default, and is enabled with "--enable usec", or --debug.  On the summary row, usec refers to the total elapsed time to collect the counters on all cpus.
Time_Of_Day_Seconds For each CPU, the gettimeofday(2) value (seconds.subsec since Epoch) when the counters ending the measurement interval were collected. This column is disabled by default, and can be enabled with "--enable Time_Of_Day_Seconds" or "--debug". On the summary row, Time_Of_Day_Seconds refers to the timestamp following collection of counters on the last CPU.
Core processor core number. Note that multiple CPUs per core indicate support for Intel(R) Hyper-Threading Technology (HT).
CPU Linux CPU (logical processor) number. Yes, it is okay that on many systems the CPUs are not listed in numerical order -- for efficiency reasons, turbostat runs in topology order, so HT siblings appear together.
Package processor package number -- not present on systems with a single processor package.
Avg_MHz number of cycles executed divided by time elapsed. Note that this includes idle-time when 0 instructions are executed.
Busy% percent of the measurement interval that the CPU executes instructions, aka. % of time in "C0" state.
Bzy_MHz average clock rate while the CPU was not idle (ie. in "c0" state).
TSC_MHz average MHz that the TSC ran during the entire interval.
IRQ The number of interrupts serviced by that CPU during the measurement interval. The system total line is the sum of interrupts serviced across all CPUs. turbostat parses /proc/interrupts to generate this summary.
SMI The number of System Management Interrupts serviced CPU during the measurement interval. While this counter is actually per-CPU, SMI are triggered on all processors, so the number should be the same for all CPUs.
C1, C2, C3... The number times Linux requested the C1, C2, C3 idle state during the measurement interval. The system summary line shows the sum for all CPUs. These are C-state names as exported in /sys/devices/system/cpu/cpu*/cpuidle/state*/name. While their names are generic, their attributes are processor specific. They the system description section of output shows what MWAIT sub-states they are mapped to on each system.
C1%, C2%, C3% The residency percentage that Linux requested C1, C2, C3.... The system summary is the average of all CPUs in the system. Note that these are software, reflecting what was requested. The hardware counters reflect what was actually achieved.
CPU%c1, CPU%c3, CPU%c6, CPU%c7 show the percentage residency in hardware core idle states. These numbers are from hardware residency counters.
CoreTmp Degrees Celsius reported by the per-core Digital Thermal Sensor.
PkgTmp Degrees Celsius reported by the per-package Package Thermal Monitor.
GFX%rc6 The percentage of time the GPU is in the "render C6" state, rc6, during the measurement interval. From /sys/class/drm/card0/power/rc6_residency_ms.
GFXMHz Instantaneous snapshot of what sysfs presents at the end of the measurement interval. From /sys/class/graphics/fb0/device/drm/card0/gt_cur_freq_mhz.
Pkg%pc2, Pkg%pc3, Pkg%pc6, Pkg%pc7 percentage residency in hardware package idle states. These numbers are from hardware residency counters.
PkgWatt Watts consumed by the whole package.
CorWatt Watts consumed by the core part of the package.
GFXWatt Watts consumed by the Graphics part of the package -- available only on client processors.
RAMWatt Watts consumed by the DRAM DIMMS -- available only on server processors.
PKG_% percent of the interval that RAPL throttling was active on the Package. Note that the system summary is the sum of the package throttling time, and thus may be higher than 100% on a multi-package system. Note that the meaning of this field is model specific. For example, some hardware increments this counter when RAPL responds to thermal limits, but does not increment this counter when RAPL responds to power limits. Comparing PkgWatt and PkgTmp to system limits is necessary.
RAM_% percent of the interval that RAPL throttling was active on DRAM.

TOO MUCH INFORMATION EXAMPLE

By default, turbostat dumps all possible information -- a system configuration header, followed by columns for all counters. This is ideal for remote debugging, use the "--out" option to save everything to a text file, and get that file to the expert helping you debug.

When you are not interested in all that information, and there are several ways to see only what you want. First the "--quiet" option will skip the configuration information, and turbostat will show only the counter columns. Second, you can reduce the columns with the "--hide" and "--show" options. If you use the "--show" option, then turbostat will show only the columns you list. If you use the "--hide" option, turbostat will show all columns, except the ones you list.

To find out what columns are available for --show and --hide, the "--list" option is available. For convenience, the special strings "sysfs" can be used to refer to all of the sysfs C-state counters at once:

sudo ./turbostat --show sysfs --quiet sleep 10
10.003837 sec
C1 C1E C3 C6 C7s C1% C1E% C3% C6% C7s%
4 21 2 2 459 0.14 0.82 0.00 0.00 98.93
1 17 2 2 130 0.00 0.02 0.00 0.00 99.80
0 0 0 0 31 0.00 0.00 0.00 0.00 99.95
2 1 0 0 52 1.14 6.49 0.00 0.00 92.21
1 2 0 0 52 0.00 0.08 0.00 0.00 99.86
0 0 0 0 71 0.00 0.00 0.00 0.00 99.89
0 0 0 0 25 0.00 0.00 0.00 0.00 99.96
0 0 0 0 74 0.00 0.00 0.00 0.00 99.94
0 1 0 0 24 0.00 0.00 0.00 0.00 99.84

ONE SHOT COMMAND EXAMPLE

If turbostat is invoked with a command, it will fork that command and output the statistics gathered after the command exits. In this case, turbostat output goes to stderr, by default. Output can instead be saved to a file using the --out option. In this example, the "sleep 10" command is forked, and turbostat waits for it to complete before saving all statistics into "ts.out". Note that "sleep 10" is not part of turbostat, but is simply an example of a command that turbostat can fork. The "ts.out" file is what you want to edit in a very wide window, paste into a spreadsheet, or attach to a bugzilla entry.

[root@hsw]# ./turbostat -o ts.out sleep 10
[root@hsw]#

PERIODIC INTERVAL EXAMPLE

Without a command to fork, turbostat displays statistics ever 5 seconds. Periodic output goes to stdout, by default, unless --out is used to specify an output file. The 5-second interval can be changed with the "-i sec" option.

sudo ./turbostat --quiet --hide sysfs,IRQ,SMI,CoreTmp,PkgTmp,GFX%rc6,GFXMHz,PkgWatt,CorWatt,GFXWatt
Core CPU Avg_MHz Busy% Bzy_MHz TSC_MHz CPU%c1 CPU%c3 CPU%c6 CPU%c7
- - 488 12.52 3900 3498 12.50 0.00 0.00 74.98
0 0 5 0.13 3900 3498 99.87 0.00 0.00 0.00
0 4 3897 99.99 3900 3498 0.01
1 1 0 0.00 3856 3498 0.01 0.00 0.00 99.98
1 5 0 0.00 3861 3498 0.01
2 2 1 0.02 3889 3498 0.03 0.00 0.00 99.95
2 6 0 0.00 3863 3498 0.05
3 3 0 0.01 3869 3498 0.02 0.00 0.00 99.97
3 7 0 0.00 3878 3498 0.03
Core CPU Avg_MHz Busy% Bzy_MHz TSC_MHz CPU%c1 CPU%c3 CPU%c6 CPU%c7
- - 491 12.59 3900 3498 12.42 0.00 0.00 74.99
0 0 27 0.69 3900 3498 99.31 0.00 0.00 0.00
0 4 3898 99.99 3900 3498 0.01
1 1 0 0.00 3883 3498 0.01 0.00 0.00 99.99
1 5 0 0.00 3898 3498 0.01
2 2 0 0.01 3889 3498 0.02 0.00 0.00 99.98
2 6 0 0.00 3889 3498 0.02
3 3 0 0.00 3856 3498 0.01 0.00 0.00 99.99
3 7 0 0.00 3897 3498 0.01

This example also shows the use of the --hide option to skip columns that are not wanted. Note that cpu4 in this example is 99.99% busy, while the other CPUs are all under 1% busy. Notice that cpu4's HT sibling is cpu0, which is under 1% busy, but can get into CPU%c1 only, because its cpu4's activity on shared hardware keeps it from entering a deeper C-state.

SYSTEM CONFIGURATION INFORMATION EXAMPLE

By default, turbostat always dumps system configuration information before taking measurements. In the example above, "--quiet" is used to suppress that output. Here is an example of the configuration information:

turbostat version 2017.02.15 - Len Brown <lenb@kernel.org>
CPUID(0): GenuineIntel 13 CPUID levels; family:model:stepping 0x6:3c:3 (6:60:3)
CPUID(1): SSE3 MONITOR - EIST TM2 TSC MSR ACPI-TM TM
CPUID(6): APERF, TURBO, DTS, PTM, No-HWP, No-HWPnotify, No-HWPwindow, No-HWPepp, No-HWPpkg, EPB
cpu4: MSR_IA32_MISC_ENABLE: 0x00850089 (TCC EIST No-MWAIT PREFETCH TURBO)
CPUID(7): No-SGX
cpu4: MSR_MISC_PWR_MGMT: 0x00400000 (ENable-EIST_Coordination DISable-EPB DISable-OOB)
RAPL: 3121 sec. Joule Counter Range, at 84 Watts
cpu4: MSR_PLATFORM_INFO: 0x80838f3012300
8 * 100.0 = 800.0 MHz max efficiency frequency
35 * 100.0 = 3500.0 MHz base frequency
cpu4: MSR_IA32_POWER_CTL: 0x0004005d (C1E auto-promotion: DISabled)
cpu4: MSR_TURBO_RATIO_LIMIT: 0x25262727
37 * 100.0 = 3700.0 MHz max turbo 4 active cores
38 * 100.0 = 3800.0 MHz max turbo 3 active cores
39 * 100.0 = 3900.0 MHz max turbo 2 active cores
39 * 100.0 = 3900.0 MHz max turbo 1 active cores
cpu4: MSR_CONFIG_TDP_NOMINAL: 0x00000023 (base_ratio=35)
cpu4: MSR_CONFIG_TDP_LEVEL_1: 0x00000000 ()
cpu4: MSR_CONFIG_TDP_LEVEL_2: 0x00000000 ()
cpu4: MSR_CONFIG_TDP_CONTROL: 0x80000000 ( lock=1)
cpu4: MSR_TURBO_ACTIVATION_RATIO: 0x00000000 (MAX_NON_TURBO_RATIO=0 lock=0)
cpu4: MSR_PKG_CST_CONFIG_CONTROL: 0x1e000400 (UNdemote-C3, UNdemote-C1, demote-C3, demote-C1, UNlocked: pkg-cstate-limit=0: pc0)
cpu4: POLL: CPUIDLE CORE POLL IDLE
cpu4: C1: MWAIT 0x00
cpu4: C1E: MWAIT 0x01
cpu4: C3: MWAIT 0x10
cpu4: C6: MWAIT 0x20
cpu4: C7s: MWAIT 0x32
cpu4: MSR_MISC_FEATURE_CONTROL: 0x00000000 (L2-Prefetch L2-Prefetch-pair L1-Prefetch L1-IP-Prefetch)
cpu0: MSR_IA32_ENERGY_PERF_BIAS: 0x00000006 (balanced)
cpu0: MSR_CORE_PERF_LIMIT_REASONS, 0x31200000 (Active: ) (Logged: Transitions, MultiCoreTurbo, Amps, Auto-HWP, )
cpu0: MSR_GFX_PERF_LIMIT_REASONS, 0x00000000 (Active: ) (Logged: )
cpu0: MSR_RING_PERF_LIMIT_REASONS, 0x0d000000 (Active: ) (Logged: Amps, PkgPwrL1, PkgPwrL2, )
cpu0: MSR_RAPL_POWER_UNIT: 0x000a0e03 (0.125000 Watts, 0.000061 Joules, 0.000977 sec.)
cpu0: MSR_PKG_POWER_INFO: 0x000002a0 (84 W TDP, RAPL 0 - 0 W, 0.000000 sec.)
cpu0: MSR_PKG_POWER_LIMIT: 0x428348001a82a0 (UNlocked)
cpu0: PKG Limit #1: ENabled (84.000000 Watts, 8.000000 sec, clamp DISabled)
cpu0: PKG Limit #2: ENabled (105.000000 Watts, 0.002441* sec, clamp DISabled)
cpu0: MSR_PP0_POLICY: 0
cpu0: MSR_PP0_POWER_LIMIT: 0x00000000 (UNlocked)
cpu0: Cores Limit: DISabled (0.000000 Watts, 0.000977 sec, clamp DISabled)
cpu0: MSR_PP1_POLICY: 0
cpu0: MSR_PP1_POWER_LIMIT: 0x00000000 (UNlocked)
cpu0: GFX Limit: DISabled (0.000000 Watts, 0.000977 sec, clamp DISabled)
cpu0: MSR_IA32_TEMPERATURE_TARGET: 0x00641400 (100 C)
cpu0: MSR_IA32_PACKAGE_THERM_STATUS: 0x884c0800 (24 C)
cpu0: MSR_IA32_THERM_STATUS: 0x884c0000 (24 C +/- 1)
cpu1: MSR_IA32_THERM_STATUS: 0x88510000 (19 C +/- 1)
cpu2: MSR_IA32_THERM_STATUS: 0x884e0000 (22 C +/- 1)
cpu3: MSR_IA32_THERM_STATUS: 0x88510000 (19 C +/- 1)
cpu4: MSR_PKGC3_IRTL: 0x00008842 (valid, 67584 ns)
cpu4: MSR_PKGC6_IRTL: 0x00008873 (valid, 117760 ns)
cpu4: MSR_PKGC7_IRTL: 0x00008891 (valid, 148480 ns)

The max efficiency frequency, a.k.a. Low Frequency Mode, is the frequency available at the minimum package voltage. The TSC frequency is the base frequency of the processor -- this should match the brand string in /proc/cpuinfo. This base frequency should be sustainable on all CPUs indefinitely, given nominal power and cooling. The remaining rows show what maximum turbo frequency is possible depending on the number of idle cores. Note that not all information is available on all processors.

ADD COUNTER EXAMPLE

Here we limit turbostat to showing just the CPU number for cpu0 - cpu3. We add a counter showing the 32-bit raw value of MSR 0x199 (MSR_IA32_PERF_CTL), labeling it with the column header, "PRF_CTRL", and display it only once, afte the conclusion of a 0.1 second sleep.

sudo ./turbostat --quiet --cpu 0-3 --show CPU --add msr0x199,u32,raw,PRF_CTRL sleep .1
0.101604 sec
CPU PRF_CTRL
- 0x00000000
0 0x00000c00
1 0x00000800
2 0x00000a00
3 0x00000800

INPUT

For interval-mode, turbostat will immediately end the current interval when it sees a newline on standard input. turbostat will then start the next interval. Control-C will be send a SIGINT to turbostat, which will immediately abort the program with no further processing.

SIGNALS

SIGINT will interrupt interval-mode. The end-of-interval data will be collected and displayed before turbostat exits.

SIGUSR1 will end current interval, end-of-interval data will be collected and displayed before turbostat starts a new interval.

NOTES

turbostat must be run as root. Alternatively, non-root users can be enabled to run turbostat this way:

# setcap cap_sys_rawio=ep ./turbostat

# chmod +r /dev/cpu/*/msr

turbostat reads hardware counters, but doesn't write them. So it will not interfere with the OS or other programs, including multiple invocations of itself.

turbostat may work poorly on Linux-2.6.20 through 2.6.29, as acpi-cpufreq periodically cleared the APERF and MPERF MSRs in those kernels.

AVG_MHz = APERF_delta/measurement_interval. This is the actual number of elapsed cycles divided by the entire sample interval -- including idle time. Note that this calculation is resilient to systems lacking a non-stop TSC.

TSC_MHz = TSC_delta/measurement_interval. On a system with an invariant TSC, this value will be constant and will closely match the base frequency value shown in the brand string in /proc/cpuinfo. On a system where the TSC stops in idle, TSC_MHz will drop below the processor's base frequency.

Busy% = MPERF_delta/TSC_delta

Bzy_MHz = TSC_delta/APERF_delta/MPERF_delta/measurement_interval

Note that these calculations depend on TSC_delta, so they are not reliable during intervals when TSC_MHz is not running at the base frequency.

Turbostat data collection is not atomic. Extremely short measurement intervals (much less than 1 second), or system activity that prevents turbostat from being able to run on all CPUS to quickly collect data, will result in inconsistent results.

The APERF, MPERF MSRs are defined to count non-halted cycles. Although it is not guaranteed by the architecture, turbostat assumes that they count at TSC rate, which is true on all processors tested to date.

REFERENCES

Volume 3B: System Programming Guide" https://www.intel.com/products/processor/manuals/

FILES

/dev/cpu/*/msr

SEE ALSO

msr(4)vmstat(8)

AUTHOR

Written by Len Brown <len.brown@intel.com>

[转帖]tubostat的更多相关文章

  1. nginx负载均衡基于ip_hash的session粘帖

    nginx负载均衡基于ip_hash的session粘帖 nginx可以根据客户端IP进行负载均衡,在upstream里设置ip_hash,就可以针对同一个C类地址段中的客户端选择同一个后端服务器,除 ...

  2. [转帖]网络协议封封封之Panabit配置文档

    原帖地址:http://myhat.blog.51cto.com/391263/322378

  3. [转帖]零投入用panabit享受万元流控设备——搭建篇

    原帖地址:http://net.it168.com/a2009/0505/274/000000274918.shtml 你想合理高效的管理内网流量吗?你想针对各个非法网络应用与服务进行合理限制吗?你是 ...

  4. 3d数学总结帖

    3d数学总结帖,以下是对3d学习过程中数学知识的简单总结 角度值和弧度制的互转 Deg2Rad 角度A1转弧度A2 => A2=A1*PI/180 Rad2Deg 弧度A2转换角度A1 => ...

  5. [转帖]The Lambda Calculus for Absolute Dummies (like myself)

    Monday, May 7, 2012 The Lambda Calculus for Absolute Dummies (like myself)   If there is one highly ...

  6. [转帖]FPGA开发工具汇总

    原帖:http://blog.chinaaet.com/yocan/p/5100017074 ----------------------------------------------------- ...

  7. [Android分享] 【转帖】Android ListView的A-Z字母排序和过滤搜索功能

      感谢eoe社区的分享   最近看关于Android实现ListView的功能问题,一直都是小伙伴们关心探讨的Android开发问题之一,今天看到有关ListView实现A-Z字母排序和过滤搜索功能 ...

  8. AxureRP7.0各类交互效果汇总帖(转)

    了便于大家参考,我把这段时间发布分享的所有关于AxureRP7.0的原型做了整理. 以下资源均有对应的RP源文件可以下载. 当然 ,其中有部分是需要通过完成解密游戏[攻略]才能得到下载地址或者下载密码 ...

  9. 未能加载文件或程序集“Newtonsoft.Json, Version=4.0.0.0, Culture=neutral, PublicKeyToken=30a [问题点数:40分,结帖人u010259408]

    未能加载文件或程序集“Newtonsoft.Json, Version=4.0.0.0, Culture=neutral, PublicKeyToken=30a [问题点数:40分,结帖人u01025 ...

  10. 转帖-[教程] Win7精简教程(简易中度)2016年8月-0day

    [教程] Win7精简教程(简易中度)2016年8月 0day 发表于 2016-8-19 16:08:41  https://www.itsk.com/thread-370260-1-1.html ...

随机推荐

  1. 基于KubeEdge的边缘节点分组管理设计与实现

    摘要:KubeEdge 1.11版本提供了"边缘节点分组管理"新特性,抽象出了跨地域的应用部署模型. 本文分享自华为云社区<基于KubeEdge的边缘节点分组管理设计与实现& ...

  2. 华为云企业级Redis揭秘第17期:集群搭载多DB,多租隔离更降本

    摘要:GaussDB(for Redis)支持真正可扩展的多DB,轻松实现降本增效. 本文分享自华为云社区<华为云企业级Redis揭秘第17期:集群搭载多DB,多租隔离更降本>,作者: G ...

  3. 转换 nvarchar 值 '81000000825' 时溢出了整数列

    转换 nvarchar 值 '81000000825' 时溢出了整数列

  4. Java -jar 运行 报 MalformedInputException: Input length = 1

    Intellij IDEA 中运行正常,linux 运行正常, cmd 下运行 报:MalformedInputException: Input length = 1 微服务项目,在Nacos中做了配 ...

  5. 【docker】运维相关名词 Iaas-Paas和Saas docker镜像设置 启动与停止常用命令 镜像相关命令 容器相关命令

    目录 上节回顾 今日内容 1 什么是Iaas-Paas和Saas 2 docker 启动设置镜像 2.1 启动与停止常用命令 3 镜像相关命令 4 容器相关命令 练习 上节回顾 # 1 flask-s ...

  6. 白话 Pulsar Bookkeeper 的存储模型

    最近我们的 Pulsar 存储有很长一段时间数据一直得不到回收,但消息确实已经是 ACK 了,理论上应该是会被回收的,随着时间流逝不但没回收还一直再涨,最后在没找到原因的情况下就只有一直不停的扩容. ...

  7. CDS 重命名失败

    当创建CDS视图,名称命名错误,后将视图名称更改后,激活报错(例如,第一次创建的视图名称为ZVWM014,后改为ZVMM014) SQL view ZVWM014 cannot be renamed ...

  8. Maven 命令安装指定 jar 包到本地仓库

    Maven 命令安装指定jar包到本地仓库: mvn install:install-file -Dfile=D:\Java\maven-repository\com\huawei\convert-p ...

  9. 分库分表Sharding-JDBC + MyBatis-Plus动态表名

    MyBatis-Plus动态表名 1: https://blog.csdn.net/Zack_tzh/article/details/107529746?utm_medium=distribute.p ...

  10. 图扑虚拟现实解决方案,实现 VR 数智机房

    前言 如今,虚拟现实技术作为连接虚拟世界和现实世界的桥梁,正加速各领域应用形成新场景.新模式.新业态. 效果展示 图扑软件基于自研可视化引擎 HT for Web 搭建的 VR 数据中心机房,是将数据 ...