import argparse
import time
from pathlib import Path import cv2
import torch
import torch.backends.cudnn as cudnn ################################################
# hardware by lpr.
import serial
ser = serial.Serial("/dev/ttyTHS0", 9600)
bofang1 = [0x7E, 0x05, 0x41, 0x00, 0x01, 0x45, 0xEF]
bofang2 = [0x7E, 0x05, 0x41, 0x00, 0x02, 0x46, 0xEF]
bofang3 = [0x7E, 0x05, 0x41, 0x00, 0x03, 0x47, 0xEF]
bofang4 = [0x7E, 0x05, 0x41, 0x00, 0x04, 0x40, 0xEF]
playpause = [0x7E, 0x03, 0x02, 0x01, 0xEF]
playstop = [0x7E, 0x03, 0x0E, 0x0D, 0xEF]
################################################
# time by lpr.
from datetime import datetime
import time
################################################ from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box
from utils.plots import colors, plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized @torch.no_grad()
def detect(weights='yolov5s.pt', # model.pt path(s)
source='data/images', # file/dir/URL/glob, 0 for webcam
imgsz=640, # inference size (pixels)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
update=False, # update all models
project='runs/detect', # save results to project/name
name='exp', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
): ###################################
# time of last play voice.
last_play = datetime.now()
################################### save_img = not nosave and not source.endswith('.txt') # save inference images
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
('rtsp://', 'rtmp://', 'http://', 'https://')) # Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir # Initialize
set_logging()
device = select_device(device)
half &= device.type != 'cpu' # half precision only supported on CUDA # Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check image size
names = model.module.names if hasattr(model, 'module') else model.names # get class names
if half:
model.half() # to FP16 # Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name='resnet50', n=2) # initialize
modelc.load_state_dict(torch.load('resnet50.pt', map_location=device)['model']).to(device).eval() # Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride) # Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0) # Inference
t1 = time_synchronized()
pred = model(img, augment=augment)[0] # Apply NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
t2 = time_synchronized() # Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s) # Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count
else:
p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0) p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results
have_person = False
have_mask = True
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
if names[int(c)] == 'Without_Mask':
have_person = True
have_mask = False
elif names[int(c)] == 'With_Mask':
have_person = True nowtime = datetime.now()
if (nowtime - last_play).seconds >= 3 and have_person:
if not have_mask:
ser.write(bofang1)
else:
ser.write(bofang2)
last_play = nowtime
print('have_mask = '); print(have_mask) # Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n') if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=line_thickness)
if save_crop:
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) # Print time (inference + NMS)
print(f'{s}Done. ({t2 - t1:.3f}s)') # Stream results
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond # Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path += '.mp4'
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer.write(im0) if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f"Results saved to {save_dir}{s}") if update:
strip_optimizer(weights) # update model (to fix SourceChangeWarning) print(f'Done. ({time.time() - t0:.3f}s)') if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='data/images', help='file/dir/URL/glob, 0 for webcam')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='show results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
opt = parser.parse_args()
print(opt)
check_requirements(exclude=('tensorboard', 'thop')) try:
if ser.is_open == False:
ser.open() # open uart
detect(**vars(opt))
except KeyboardInterrupt: # Ctrl+C
if ser != None:
ser.close() # Close Port immediately

detect.py - yolov5master nvidia jetson agx xavier for mask with UART的更多相关文章

  1. Jetson AGX Xavier ROS下调用USB单目摄像头

    Jetson AGX Xavier安装的ROS是Melodic版本的,所以部署的时候用到的包都是Melodic的. 1. 查看USB摄像头 摄像头连接Xavier设备,调用命令查看. ls /dev/ ...

  2. Jetson AGX Xavier刷机

    1. 准备一台电脑做主机(host),运行Ubuntu系统,我用的是虚拟机,运行的是Ubuntu 18.04系统. 2. 主机更换apt-get源,参见https://www.cnblogs.com/ ...

  3. Jetson AGX Xavier安装TensorFlow

    参考https://docs.nvidia.com/deeplearning/frameworks/install-tf-jetson-platform/#prereqs 1. 安装系统包 sudo ...

  4. Jetson AGX Xavier更换apt-get源

    使用apt-get安装时,会很慢,更换了国内的源后,就可以解决这个问题了. 1. 备份sources.list文件 sudo cp /etc/apt/sources.list /etc/apt/sou ...

  5. Jetson AGX Xavier/Ubuntu更改pip3源

    pip3换源: 修改~/.pip/pip.conf,如果没有这个文件,就创建一个. 内容如下: [global]index-url = https://pypi.tuna.tsinghua.edu.c ...

  6. Jetson AGX Xavier/Ubuntu安装SSD

    参考 https://blog.csdn.net/xingdou520/article/details/84309155 1. 查看硬盘所有分区 sudo fdisk -lu 会找到/dev/nvme ...

  7. Jetson AGX Xavier/Ubuntu安装QT

    安装QT命令 sudo apt-get install qt5-default qtcreator -y 如果出现错误:unknow module webenginewidgets serialpor ...

  8. Jetson AGX Xavier/ubuntu查找文件

    用以下命令查找文件 sudo updatedb locate xxx #xxx是文件名 如果找不到命令,则需要安装mlocate sudo apt-get install mlocate

  9. Jetson AGX Xavier部署ORB_SLAM2(ROS)

    1. 修改CMakeLists.txt Examples/ROS/ORB_SLAM2下的CMakeLists.txt 原 set(LIBS ${OpenCV_LIBS} ${EIGEN3_LIBS} ...

  10. NVIDIA DRIVE AGX开发工具包

    NVIDIA DRIVE AGX开发工具包 英伟达drive AGX开发工具包提供了开发生产级自主车辆(AV)所需的硬件.软件和示例应用程序.NVIDIA DRIVE AGX系统建立在汽车产品级芯片上 ...

随机推荐

  1. WPF 在 .NET Core 3.1.19 版本 触摸笔迹偏移问题

    在更新到 .NET 6 发布之前的,在 2021.11.02 的 .NET Core 版本,都会存在此问题.在 WPF 应用里面,如果在高 DPI 下,进行触摸书写,此时的笔迹将会偏移.核心原因是在这 ...

  2. LVGL 显示图片

    一.图片存储 我们可以将图像存储在两个位置 作为内部存储器(RAM或ROM)中的变量 作为文件 图片以文件的形式存储在文件系中(比如SD),需要打开LVGL的文件操作的功能(打开,读取,关闭等).虽然 ...

  3. hbuilder打包报错:java.lang.IllegalStateException: Expected BEGIN_OBJECT but was BEGIN_ARRAY at line 7 column 15 path $.icons

    一个棘手的问题,在网上找几乎没有出现这样的案例,个别也只有翻译没有解决方式,,,,,自己研究一番发现这实际上都不算是个问题 这句话翻译:这个位置应该是个对象而不是数组,解决方法: 在manifest. ...

  4. go实现发送邮件验证码

    目录 开启SMTP服务: 发邮件测试 业务实现 开启SMTP服务: QQ邮箱参考下面连接: QQ邮箱如何开通SMTP服务 https://jingyan.baidu.com/article/00a07 ...

  5. chgrp chown

    chgrp 用来改变文件所属群组,如果要改变的群组不在/etc/group里面,将会报错. chown 用来改变文件的所有者,如果改变的所有者便在/etc/passwd里面,将会报错. 需要注意的是c ...

  6. Vue-Plugin-HiPrint

    Vue-Plugin-HiPrint 是一个Vue.js的插件,旨在提供一个简单而强大的打印解决方案.通过 Vue-Plugin-HiPrint,您可以轻松地在Vue.js应用程序中实现高度定制的打印 ...

  7. Java 工程文件的 .gitignore

    以下是一个排查 Java 工程文件的 .gitignore 文件示例: # Java 编译器生成的文件 *.class # Maven 生成的文件夹 target/ # Eclipse 生成的文件夹 ...

  8. WPF使用Shape实现复杂线条动画

    看到巧用 CSS/SVG 实现复杂线条光效动画的文章,便也想尝试用WPF的Shape配合动画实现同样的效果.ChokCoco大佬的文章中介绍了基于SVG的线条动画效果和通过角向渐变配合 MASK 实现 ...

  9. AIRIOT助力城市管廊工程,智慧物联守护城市生命线

    ​ 随着科技的不断革新,人工智能.大数据.物联网等新一代技术驱动的智慧城市快速发展,众多领域和行业的参随着科技的不断革新,人工智能.大数据.物联网等新一代技术驱动的智慧城市快速发展,众多领域和行业的参 ...

  10. linux wget命令的重要用法:下载文件并保存,后台下载

    Linux wget命令是一个下载文件的工具,它用在命令行下. #从网络下载一个文件并保存在当前目录 [root@node5 ~]# wget http://cn.wordpress.org/word ...