POJ 2387 Til the Cows Come Home(最短路板子题,Dijkstra算法, spfa算法,Floyd算法,深搜DFS)
Til the Cows Come Home
Time Limit: 1000MS | Memory Limit: 65536K | |
---|---|---|
Total Submissions: 43861 | Accepted: 14902 |
Description
Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.
Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.
Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.
Input
* Line 1: Two integers: T and N
* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.
Output
* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.
Sample Input
5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100
Sample Output
90
Hint
INPUT DETAILS:
There are five landmarks.
OUTPUT DETAILS:
Bessie can get home by following trails 4, 3, 2, and 1.
思路:
经典最短路径板子题(模板题)
现在用 Dijkstra算法, spfa(bellman ford)算法, Floyd算法, 深搜DFS都写一遍回顾下
递归DFS(TLE)
使用快读(代码未写出)以后仍T,说明DFS做了很多无用的搜索,在优化搜索的程度上可以进阶学习A*搜索算法
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
#define ms(a,b) memset(a,b,sizeof(b));
const int inf = 0x3f3f3f3f;
const int N = 1000 + 10;
int map[N][N];
bool book[N];
int minn , n;
void dfs(int index,int step) {
if (index == 1) {
minn = min(minn, step);
return;
}
if (step > minn)return;
for (int i = 1; i <= n; ++i) {
if (!book[i] && map[index][i] != inf) {
book[i] = 1;
dfs(i, step + map[index][i]);
book[i] = 0;
}
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int t, t1, t2, w;
while (cin >> t >> n) {
minn = inf;
ms(map,inf);
ms(book,false);
//memset(map, inf, sizeof(map));
//memset(book, false, sizeof(book));
while (t--) {
cin >> t1 >> t2 >> w;
map[t1][t2] = map[t2][t1] = min(map[t1][t2], w);
}
book[n] = 1;
dfs(n, 0);
cout << minn << endl;
}
return 0;
}
dijkstra算法(AC 、79ms)
#include <stdio.h>
#include <string.h>
#include <string>
#include <iostream>
#include <stack>
#include <queue>
#include <vector>
#include <algorithm>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int inf=1<<29;
int map[1010][1010];//map[i][j]表示从i-->j的距离
int dist[1010];//dist[i]从v1到i的距离
int vis[1010];//标记有没有被访问过
void dijkstra(int n)
{
int k,min;
for(int i=1; i<=n; i++)
{
dist[i]=map[1][i];
vis[i]=0;
}
for(int i=1; i<=n; i++)//遍历顶点
{
k=0;
min=inf;
for(int j=1; j<=n; j++)
if(vis[j]==0&&dist[j]<min)
{
min=dist[j];
k=j;
}
vis[k]=1;
for(int j=1; j<=n; j++)
if(vis[j]==0&&dist[k]+map[k][j]<dist[j])
dist[j]=dist[k]+map[k][j];//如果找到了通路就加上
}
return;
}
int main()
{
int t,n,a,b,w;
while(~scanf("%d%d",&t,&n))
{
mem(map,0);
mem(vis,0);
mem(dist,0);
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
map[i][j]=inf;//初始化为无穷大
for(int i=1; i<=t; i++)
{
scanf("%d%d%d",&a,&b,&w);
if(w<map[a][b])
{
map[a][b]=w;
map[b][a]=map[a][b];//建立无向图
}//这里是判断是否有重边,应为两点之间的路,未必只有一条。
}
dijkstra(n);
printf("%d\n",dist[n]);
}
return 0;
}
堆优化:
#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>1
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#define IOS ios_base::sync_with_stdio(0); cin.tie(0)
#define Mod 1000000007
#define eps 1e-6
#define ll long long
#define INF 0x3f3f3f3f
#define MEM(x,y) memset(x,y,sizeof(x))
#define Maxn 2000+5
#define P pair<int,int>//first最短路径second顶点编号
using namespace std;
int N, M, X;
struct edge
{
int to, cost;
edge(int to, int cost) :to(to), cost(cost) {}
};
vector<edge>G[Maxn];//G[i] 从i到G[i].to的距离为cost
int d[Maxn][Maxn];//d[i][j]从i到j的最短距离
void Dijk(int s)
{
priority_queue<P, vector<P>, greater<P> >q;//按first从小到大出队
for (int i = 0; i <= M; i++)
d[s][i] = INF;
d[s][s] = 0;
q.push(P(0, s));
while (!q.empty())
{
P p = q.top();
q.pop();
int v = p.second;//点v
if (d[s][v] < p.first)
continue;
for (int i = 0; i < G[v].size(); i++)
{
edge e = G[v][i];//枚举与v相邻的点
if (d[s][e.to] > d[s][v] + e.cost)
{
d[s][e.to] = d[s][v] + e.cost;
q.push(P(d[s][e.to], e.to));
}
}
}
}
int main()
{
IOS;
while (cin >> N >> M)
{
for (int i = 0; i < N; i++)
{
int x, y, z;
cin >> x >> y >> z;
G[x].push_back(edge(y, z));
G[y].push_back(edge(x, z));
}
Dijk(1);
cout << d[1][M] << endl;
}
return 0;
}
floyd算法(TLE)
#include<cstring>
#include <iostream>
#include <algorithm>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int inf = 1 << 29;
int map[1010][1010];//map[i][j]表示从i-->j的距离
int main()
{
int t, n, a, b, w;
while (~scanf("%d%d", &t, &n))
{
mem(map, 0);
//初始化
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
if (i == j)
map[i][j] = 0;
else
map[i][j] = inf;//初始化为无穷大
//建立图
for (int i = 1; i <= t; i++){
scanf("%d%d%d", &a, &b, &w);
map[a][b] = map[b][a] = min(w, map[a][b]);//建立无向图
}//这里是判断是否有重边,应为两点之间的路,未必只有一条。
//弗洛伊德(Floyd)核心语句
for (int k = 1; k <= n; k++)
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
if (map[i][k] + map[k][j] < map[i][j])
map[i][j] = map[i][k] + map[k][j];
printf("%d\n", map[1][n]);
}
return 0;
}
Bellman ford算法(AC 496ms。。)
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstdio>
typedef long long ll;
//typedef unsigned long long ull;
using namespace std;
const int N = 1005, T = 4005;
int n, t;
int dis[N];
vector<vector<int> > gra(T, vector<int> (3)); //邻接表存储图
const int inf = 1 << 29;
void bellmanford() {
for (int i = 1; i <= n; ++i) {
dis[i] = inf;
}
dis[1] = 0;
for (int i = 1; i < n; ++i) {
for (int j = 1; j <= t * 2; ++j) {
dis[gra[j][1]] = min(dis[gra[j][1]], dis[gra[j][0]] + gra[j][2]);
}
}
}
int main() {
scanf("%d%d", &t, &n);
for (int i = 0, index = 1; i < t; ++i) {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
gra[index][0] = a, gra[index][1] = b, gra[index][2] = c; ++index;
gra[index][1] = a, gra[index][0] = b, gra[index][2] = c; ++index;
}
bellmanford();
printf("%d\n", dis[n]);
return 0;
}
spfa队列优化(bfs、AC 79ms)
//spfa
#include <vector>
#include <algorithm>
#include <cstdio>
#include <queue>
using namespace std;
const int N = 1005, T = 4005;
int n, t;
int dis[N], vis[N]; //dis数组存单元源点到其他各个点的距离
//vis存顶点v是否已经在队列当中以减少不必要的操作
vector<int> to[N], edge[N]; //邻接表分别存以i为下标的邻接的顶点和权值
const int inf = 1 << 29;
void spfa() {
queue<int> q;
for (int i = 1; i <= n; ++i) {
dis[i] = inf;
}
dis[1] = 0;
q.push(1);
while (!q.empty()) {
int u = q.front(); q.pop();
vis[u] = false;
for (int i = 0; i < to[u].size(); ++i) { //遍历邻接的顶点
int v = to[u][i], w = edge[u][i];
if (dis[v] > dis[u] + w) {
dis[v] = dis[u] + w;
if (!vis[v]) {
vis[v] = true;
q.push(v);
}
}
}
}
}
int main() {
scanf("%d%d", &t, &n);
for (int i = 0; i < t; ++i) {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
//无向图
to[a].push_back(b); edge[a].push_back(c);
to[b].push_back(a); edge[b].push_back(c);
}
spfa();
printf("%d\n", dis[n]);
return 0;
}
写完几种模板以后分析一下时间复杂度
参考资料
- 资料出自《啊哈算法》
POJ 2387 Til the Cows Come Home(最短路板子题,Dijkstra算法, spfa算法,Floyd算法,深搜DFS)的更多相关文章
- POJ 2387 Til the Cows Come Home --最短路模板题
Dijkstra模板题,也可以用Floyd算法. 关于Dijkstra算法有两种写法,只有一点细节不同,思想是一样的. 写法1: #include <iostream> #include ...
- POJ 2387 Til the Cows Come Home (最短路径 模版题 三种解法)
原题链接:Til the Cows Come Home 题目大意:有 个点,给出从 点到 点的距离并且 和 是互相可以抵达的,问从 到 的最短距离. 题目分析:这是一道典型的最短路径模版 ...
- POJ 2387 Til the Cows Come Home(最短路模板)
题目链接:http://poj.org/problem?id=2387 题意:有n个城市点,m条边,求n到1的最短路径.n<=1000; m<=2000 就是一个标准的最短路模板. #in ...
- POJ 2387 Til the Cows Come Home (图论,最短路径)
POJ 2387 Til the Cows Come Home (图论,最短路径) Description Bessie is out in the field and wants to get ba ...
- POJ.2387 Til the Cows Come Home (SPFA)
POJ.2387 Til the Cows Come Home (SPFA) 题意分析 首先给出T和N,T代表边的数量,N代表图中点的数量 图中边是双向边,并不清楚是否有重边,我按有重边写的. 直接跑 ...
- POJ 2387 Til the Cows Come Home
题目链接:http://poj.org/problem?id=2387 Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K ...
- POJ 2387 Til the Cows Come Home(模板——Dijkstra算法)
题目连接: http://poj.org/problem?id=2387 Description Bessie is out in the field and wants to get back to ...
- POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)
传送门 Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 46727 Acce ...
- 怒学三算法 POJ 2387 Til the Cows Come Home (Bellman_Ford || Dijkstra || SPFA)
Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33015 Accepted ...
- POJ 2387 Til the Cows Come Home (最短路 dijkstra)
Til the Cows Come Home 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Bessi ...
随机推荐
- 学生开发者勇担青年使命,用AI守护少数人的“视界”
本文分享自华为云社区<[先锋开发者云上说]学生开发者勇担青年使命,用AI守护少数人的"视界">,作者:华为云社区精选 . 青年动人之处,在于他们的勇气,和非凡的创造探索 ...
- C#Winform使用NPOI获取word中的数据
公众号「DotNet学习交流」,分享学习DotNet的点滴. 需求 想要获取word里面的内容,如下图所示: 有一张表和一段文本,并将它们存入数据库或者Excel. 步骤 添加NPOI的库,如下图所示 ...
- 洛谷P2579 [ZJOI2005]沼泽鳄鱼(矩阵快速幂,周期)
例题:现在豆豆已经选好了两座石墩Start和End,他想从Start出发,经过K个单位时间后恰好站在石墩End上.假设石墩可以重复经过(包括Start和End),他想请你帮忙算算,这样的路线共有多少种 ...
- Socket.D 网络应用协议,首版发布!
有用户说,"Socket.D 之于 Socket,尤如 Vue 之于 Js.Mvc 之于 Http" 主要特性 基于事件,每个消息都可事件路由 所谓语义,通过元信息进行语义描述 流 ...
- 深入了解UUID:生成、应用与优势
一.引言 在当今数字化时代,唯一标识一个对象的能力变得越来越重要.UUID(Universally Unique Identifier,通用唯一标识符)应运而生,作为一种保证全球唯一性的标识方法,广泛 ...
- WPF 绑定binding都有哪些事件
在WPF中,源属性(Source Property)指的是提供数据的属性,通常是数据模型或者其他控件的属性,而目标属性(Target Property)则是数据绑定的目标,通常是绑定到控件的属性,例如 ...
- 12 HTTP的实体数据
目录 数据类型和编码 HTTP协议为什么要关心 body MIME(Multipurpose Internet Mail Extensions)多用途互联网邮件扩展类型 HTTP 常用数据类型 MIM ...
- Excel对比两张表的某一列,匹配上则进行数据copy
VLOOKUP(参数1,参数2,参数3,参数4) 参数1: 查找值 参数2:指定查找数据源的范围 参数3:返回查找区域的第几列数据 参数4:精确查找输入参数"0"or"f ...
- JDK8提供的常用计量单位
时间计量单位:Duration @DurationUnit(ChronoUnit.HOURS) private Duration serverTimeout; 空间计量单位:DataSize @Dat ...
- Qt+FFmpeg仿VLC接收RTSP流并播放
关键词:Qt FFmpeg C++ RTSP RTP VLC 内存泄漏 摘要认证 花屏 源码 UDP 本系列原文地址. 下载直接可运行的源码,在原文顶部. 效果 产生RTSP流 比播放文件复杂一点是, ...