金融、支付行业的开发者不得不知道的float、double计算误差问题
为什么浮点数 float
或 double
运算的时候会有精度丢失的风险呢?
《阿里巴巴 Java 开发手册》中提到:“浮点数之间的等值判断,基本数据类型不能用 == 来比较,包装数据类型不能用 equals 来判断”。“为了避免精度丢失,可以使用 BigDecimal
来进行浮点数的运算”。
浮点数的运算竟然还会有精度丢失的风险吗?确实会!
示例代码:
float a = 2.0f - 1.9f;
float b = 1.8f - 1.7f;
System.out.println(a);// 0.100000024
System.out.println(b);// 0.099999905
System.out.println(a == b);// false
这个和计算机保存浮点数的机制有很大关系。我们知道计算机是二进制的,而且计算机在表示一个数字时,宽度是有限的,无限循环的小数存储在计算机时,只能被截断,所以就会导致小数精度发生损失的情况。这也就是解释了为什么浮点数没有办法用二进制精确表示。
就比如说十进制下的 0.2 就没办法精确转换成二进制小数:
// 0.2 转换为二进制数的过程为,不断乘以 2,直到不存在小数为止,
// 在这个计算过程中,得到的整数部分从上到下排列就是二进制的结果。
0.2 * 2 = 0.4 -> 0
0.4 * 2 = 0.8 -> 0
0.8 * 2 = 1.6 -> 1
0.6 * 2 = 1.2 -> 1
0.2 * 2 = 0.4 -> 0(发生循环)
...
关于浮点数的更多内容,建议看一下计算机系统基础(四)浮点数这篇文章。
那我们怎样来解决这样的问题呢?
JDK开发人员在很早就遇到了这个问题,并在JDK1.3起给我们提供了一种新的处理精确值的类BigDecimal,BigDecimal是标准的类,在编译器中不需要特殊支持,它可以表示任意精度的小数,并对它们进行计算。在内部,可以用任意精度任何范围的值和一个
换算因子来表示 BigDecimal,换算因子表示左移小数点多少位,从而得到所期望范围内的值
BigDecimal 介绍
BigDecimal
可以实现对浮点数的运算,不会造成精度丢失。
通常情况下,大部分需要浮点数精确运算结果的业务场景(比如涉及到钱的场景)都是通过 BigDecimal
来做的。
想要解决浮点数运算精度丢失这个问题,可以直接使用 BigDecimal
来定义浮点数的值,然后再进行浮点数的运算操作即可。
BigDecimal a = new BigDecimal("1.0");
BigDecimal b = new BigDecimal("0.9");
BigDecimal c = BigDecimal.valueOf(0.8);
BigDecimal x = a.subtract(b);
BigDecimal y = b.subtract(c);
System.out.println(x.compareTo(y));// 0
BigDecimal 常见方法
创建
在使用 BigDecimal
时,为了防止精度丢失,推荐使用它的BigDecimal(String val)
构造方法或者 BigDecimal.valueOf(double val)
静态方法来创建对象。
《阿里巴巴 Java 开发手册》对这部分内容也有提到,如下图所示。
public static BigDecimal valueOf(double val) {
return new BigDecimal(Double.toString(val));
}
加减乘除
add
方法:两个BigDecimal
对象相加subtract
方法:两个BigDecimal
对象相减multiply
方法:两个BigDecimal
对象相乘divide
方法:两个BigDecimal
对象相除。
BigDecimal a = new BigDecimal("1.0");
BigDecimal b = new BigDecimal("0.9");
System.out.println(a.add(b));// 1.9
System.out.println(a.subtract(b));// 0.1
System.out.println(a.multiply(b));// 0.90
System.out.println(a.divide(b));// 无法除尽,抛出 ArithmeticException 异常
System.out.println(a.divide(b, 2, RoundingMode.HALF_UP));// 1.11
这里需要注意的是,在使用 divide
方法的时候尽量使用 3 个参数版本,并且RoundingMode
不要选择 UNNECESSARY
,否则很可能会遇到 ArithmeticException
(无法除尽出现无限循环小数的时候),其中 scale
表示要保留几位小数,roundingMode
代表保留规则。
public BigDecimal divide(BigDecimal divisor, int scale, RoundingMode roundingMode) {
return divide(divisor, scale, roundingMode.oldMode);
}
保留几位小数 setScale
通过 setScale
方法设置保留几位小数以及保留规则。保留规则如上,不需要记,IDEA 会提示。
BigDecimal m = new BigDecimal("1.255433");
BigDecimal n = m.setScale(3, RoundingMode.HALF_DOWN);
System.out.println(n);// 1.255
保留规则非常多,这里列举几种:
public enum RoundingMode {
// 2.5 -> 3 , 1.6 -> 2
// -1.6 -> -2 , -2.5 -> -3
UP(BigDecimal.ROUND_UP),//远离零方向舍入,无论正负
// 2.5 -> 2 , 1.6 -> 1
// -1.6 -> -1 , -2.5 -> -2
DOWN(BigDecimal.ROUND_DOWN),//向零方向舍入,直接去掉小数部分。
// 2.5 -> 3 , 1.6 -> 2
// -1.6 -> -1 , -2.5 -> -2
CEILING(BigDecimal.ROUND_CEILING),//向正无穷方向舍入。
// 2.5 -> 2 , 1.6 -> 1
// -1.6 -> -2 , -2.5 -> -3
FLOOR(BigDecimal.ROUND_FLOOR),//向负无穷方向舍入。
// 2.5 -> 3 , 1.6 -> 2
// -1.6 -> -2 , -2.5 -> -3
HALF_UP(BigDecimal.ROUND_HALF_UP),//四舍五入,小数部分 >= 0.5 向上,否则向下。
//......
}
等值比较问题
《阿里巴巴 Java 开发手册》中提到:
BigDecimal
使用 equals()
方法进行等值比较出现问题的代码示例:
BigDecimal a = new BigDecimal("1");
BigDecimal b = new BigDecimal("1.0");
System.out.println(a.equals(b));//false
这是因为BigDecimal的 equals()
方法不仅仅会比较值的大小(value)还会比较精度(scale),而 compareTo()
方法比较的时候会忽略精度。
1.0 的 scale 是 1,1 的 scale 是 0,因此 a.equals(b)
的结果是 false。
compareTo()
方法可以比较两个 BigDecimal
的值:
a.compareTo(b)
: 返回 -1 表示 a
小于 b
,0 表示 a
等于 b
, 1 表示 a
大于 b
。
BigDecimal a = new BigDecimal("1");
BigDecimal b = new BigDecimal("1.0");
System.out.println(a.compareTo(b));//0
BigDecimal 存在的性能问题
由于其精确性和灵活性,BigDecimal
在某些场景下同样可能会带来性能问题。
BigDecimal的性能问题主要源于以下几点:
- 内存占用:BigDecimal 对象的内存占用较大,尤其是在处理大数字时。每个 BigDecimal 实例都需要维护其精度和标度等信息,这会导致内存开销增加。
- 不可变性:BigDecimal 是不可变类,每次进行运算或修改值时都会生成一个新的 BigDecimal 实例。这意味着频繁的操作可能会导致大量的对象创建和垃圾回收,对性能造成一定的影响。
- 运算复杂性:由于 BigDecimal 要求精确计算,它在执行加、减、乘、除等运算时会比较复杂。这些运算需要更多的计算和处理时间,相比原生的基本类型,会带来一定的性能损耗。
性能问题验证:
@Slf4j
public class BigDecimalEfficiency {
//执行次数
public static int REPEAT_TIMES = 10000000;
// 转BigDecimal 类型计算
public static double computeByBigDecimal(double a, double b) {
BigDecimal result = BigDecimal.valueOf(0);
BigDecimal decimalA = BigDecimal.valueOf(a);
BigDecimal decimalB = BigDecimal.valueOf(b);
for (int i = 0; i < REPEAT_TIMES; i++) {
result = result.add(decimalA.multiply(decimalB));
}
return result.doubleValue();
}
// 转double 类型计算
public static double computeByDouble(double a, double b) {
double result = 0;
for (int i = 0; i < REPEAT_TIMES; i++) {
result += a * b;
}
return result;
}
public static void main(String[] args) {
long start1 = System.nanoTime();
double result1 = computeByBigDecimal(0.120001110034, 11.22);
long end1 = System.nanoTime();
long start2 = System.nanoTime();
double result2 = computeByDouble(0.120001110034, 11.22);
long end2 = System.nanoTime();
long timeUsed1 = (end1 - start1);
long timeUsed2 = (end2 - start2);
log.info("result by BigDecimal:{},time used:{}", result1, timeUsed1);
log.info("result by Double:{},time used:{}", result2, timeUsed2);
log.info("timeUsed1/timeUsed2=" + timeUsed1 / timeUsed2);
}
}
运行结果:
性能优化策略
BigDecimal
性能问题优化策略,可以考虑以下几点优化策略:
- 避免频繁的对象创建:尽量复用 BigDecimal 对象,而不是每次运算都创建新的实例。可以使用 BigDecimal 的 setScale() 方法设置精度和舍入模式,而不是每次都创建新的对象。
- 使用原生类型替代:对于一些不需要精确计算的场景,可以使用原生类型(如 int、double、long)来进行运算,以提高性能。只在最后需要精确结果时再转换为 BigDecimal。
- 使用适当的缓存策略:对于频繁使用的 BigDecimal 对象,可以考虑使用缓存来避免重复创建和销毁。例如,使用对象池或缓存来管理常用的 BigDecimal 对象,以减少对象创建和垃圾回收的开销。
- 考虑并行计算:对于大规模的计算任务,可以考虑使用并行计算来提高性能。Java 8 提供了 Stream API 和并行流(parallel stream),可以方便地实现并行计算。
需要根据具体的应用场景和需求来权衡精确性和性能,选择合适的处理方式。在对性能要求较高的场景下,可以考虑使用其他更适合的数据类型或算法来替代 BigDecimal。在需要精度计算的情况下,也不能因为BigDecimal存在一定的性能问题二选择弃用,顾此失彼。
BigDecimal 工具类分享
网上有一个使用人数比较多的 BigDecimal
工具类,提供了多个静态方法来简化 BigDecimal
的操作。源码:
public class BigDecimalUtil {
/**
* 默认除法运算精度
*/
private static final int DEF_DIV_SCALE = 10;
private BigDecimalUtil() {
}
/**
* 提供精确的加法运算。
*
* @param v1 被加数
* @param v2 加数
* @return 两个参数的和
*/
public static double add(double v1, double v2) {
BigDecimal b1 = BigDecimal.valueOf(v1);
BigDecimal b2 = BigDecimal.valueOf(v2);
return b1.add(b2).doubleValue();
}
/**
* 提供精确的减法运算。
*
* @param v1 被减数
* @param v2 减数
* @return 两个参数的差
*/
public static double subtract(double v1, double v2) {
BigDecimal b1 = BigDecimal.valueOf(v1);
BigDecimal b2 = BigDecimal.valueOf(v2);
return b1.subtract(b2).doubleValue();
}
/**
* 提供精确的乘法运算。
*
* @param v1 被乘数
* @param v2 乘数
* @return 两个参数的积
*/
public static double multiply(double v1, double v2) {
BigDecimal b1 = BigDecimal.valueOf(v1);
BigDecimal b2 = BigDecimal.valueOf(v2);
return b1.multiply(b2).doubleValue();
}
/**
* 提供(相对)精确的除法运算,当发生除不尽的情况时,精确到小数点以后10位,以后的数字四舍五入。
*
* @param v1 被除数
* @param v2 除数
* @return 两个参数的商
*/
public static double divide(double v1, double v2) {
return divide(v1, v2, DEF_DIV_SCALE);
}
/**
* 提供(相对)精确的除法运算。当发生除不尽的情况时,由scale参数指定精度,以后的数字四舍五入。
*
* @param v1 被除数
* @param v2 除数
* @param scale 表示表示需要精确到小数点以后几位。
* @return 两个参数的商
*/
public static double divide(double v1, double v2, int scale) {
if (scale < 0) {
throw new IllegalArgumentException(
"The scale must be a positive integer or zero");
}
BigDecimal b1 = BigDecimal.valueOf(v1);
BigDecimal b2 = BigDecimal.valueOf(v2);
return b1.divide(b2, scale, RoundingMode.HALF_EVEN).doubleValue();
}
/**
* 提供精确的小数位四舍五入处理。
*
* @param v 需要四舍五入的数字
* @param scale 小数点后保留几位
* @return 四舍五入后的结果
*/
public static double round(double v, int scale) {
if (scale < 0) {
throw new IllegalArgumentException(
"The scale must be a positive integer or zero");
}
BigDecimal b = BigDecimal.valueOf(v);
BigDecimal one = new BigDecimal("1");
return b.divide(one, scale, RoundingMode.HALF_UP).doubleValue();
}
/**
* 提供精确的类型转换(Float)
*
* @param v 需要被转换的数字
* @return 返回转换结果
*/
public static float convertToFloat(double v) {
BigDecimal b = new BigDecimal(v);
return b.floatValue();
}
/**
* 提供精确的类型转换(Int)不进行四舍五入
*
* @param v 需要被转换的数字
* @return 返回转换结果
*/
public static int convertsToInt(double v) {
BigDecimal b = new BigDecimal(v);
return b.intValue();
}
/**
* 提供精确的类型转换(Long)
*
* @param v 需要被转换的数字
* @return 返回转换结果
*/
public static long convertsToLong(double v) {
BigDecimal b = new BigDecimal(v);
return b.longValue();
}
/**
* 返回两个数中大的一个值
*
* @param v1 需要被对比的第一个数
* @param v2 需要被对比的第二个数
* @return 返回两个数中大的一个值
*/
public static double returnMax(double v1, double v2) {
BigDecimal b1 = new BigDecimal(v1);
BigDecimal b2 = new BigDecimal(v2);
return b1.max(b2).doubleValue();
}
/**
* 返回两个数中小的一个值
*
* @param v1 需要被对比的第一个数
* @param v2 需要被对比的第二个数
* @return 返回两个数中小的一个值
*/
public static double returnMin(double v1, double v2) {
BigDecimal b1 = new BigDecimal(v1);
BigDecimal b2 = new BigDecimal(v2);
return b1.min(b2).doubleValue();
}
/**
* 精确对比两个数字
*
* @param v1 需要被对比的第一个数
* @param v2 需要被对比的第二个数
* @return 如果两个数一样则返回0,如果第一个数比第二个数大则返回1,反之返回-1
*/
public static int compareTo(double v1, double v2) {
BigDecimal b1 = BigDecimal.valueOf(v1);
BigDecimal b2 = BigDecimal.valueOf(v2);
return b1.compareTo(b2);
}
}
总结
浮点数没有办法用二进制精确表示,因此存在精度丢失的风险。不过,Java 提供了BigDecimal
来操作浮点数。BigDecimal
的实现利用到了 BigInteger
(用来操作大整数), 所不同的是 BigDecimal
加入了小数位的概念。
关于作者
来自一线程序员Seven的探索与实践,持续学习迭代中~
本文已收录于我的个人博客:https://www.seven97.top
公众号:seven97,欢迎关注~
金融、支付行业的开发者不得不知道的float、double计算误差问题的更多相关文章
- 90%的开发者都不知道的UI本质原理和优化方式
前言 很多开发者在工作中一直和UI打交道,所以认为UI非常的简单! 事实上对于90%的开发者来说,不知道UI的本质原理. 虽然在开发中,我们在接到产品的UI需求之后,可以走捷径照抄大型APP代码,但是 ...
- 90% 前端开发者都不知道的 JavaScript 实用小技巧
面试神器之数组去重 const a = [...new Set([1, 2, 3, 3])] >> [1, 2, 3] 操作数组担心 falsy 值? const res = myArra ...
- [iOS翻译]《iOS 7 Programming Pushing the Limits》系列:你可能不知道的Objective-C技巧
简介: 如果你阅读这本书,你可能已经牢牢掌握iOS开发的基础,但这里有一些小特点和实践是许多开发者并不熟悉的,甚至有数年经验的开发者也是.在这一章里,你会学到一些很重要的开发技巧,但这仍远远不够,你还 ...
- 你所不知道的html5与html中的那些事第三篇
文章简介: 关于html5相信大家早已经耳熟能详,但是他真正的意义在具体的开发中会有什么作用呢?相对于html,他又有怎样的新的定义与新理念在里面呢?为什么一些专家认为html5完全完成后,所有的工作 ...
- 你所不知道的五件事情--java.util.concurrent(第二部分)
这是Ted Neward在IBM developerWorks中5 things系列文章中的一篇,仍然讲述了关于Java并发集合API的一些应用窍门,值得大家学习.(2010.06.17最后更新) 摘 ...
- 关于RecyclerView你知道的不知道的都在这了(下)
目录 目录 正文 6. Recycler 7. ItemAnimator 8. ItemDecoration 9. OnFlingListener 目录 由于本篇篇幅特长,特意做了个目录,让大伙对本篇 ...
- [No0000194]聊聊 Chrome DevTools 中你可能不知道的调试技巧
对于前端开发者来说,ChromeDevTools 绝对是不可或缺的调试工具,我们常用的调试方法包含一些console等,而ChromeDevTools 其实很强大,下面来聊聊一些你可能不知道的debu ...
- JavaScript 优雅的实现方式包含你可能不知道的知识点
有些东西很好用,但是你未必知道:有些东西你可能用过,但是你未必知道原理. 实现一个目的有多种途径,俗话说,条条大路通罗马.很多内容来自平时的一些收集以及过往博客文章底下的精彩评论,收集整理拓展一波,发 ...
- 你所不知道的 CSS 阴影技巧与细节 滚动视差?CSS 不在话下 神奇的选择器 :focus-within 当角色转换为面试官之后 NPOI 教程 - 3.2 打印相关设置 前端XSS相关整理 委托入门案例
你所不知道的 CSS 阴影技巧与细节 关于 CSS 阴影,之前已经有写过一篇,box-shadow 与 filter:drop-shadow 详解及奇技淫巧,介绍了一些关于 box-shadow ...
- 你所不知道的html5与html中的那些事(三)
文章简介: 关于html5相信大家早已经耳熟能详,但是他真正的意义在具体的开发中会有什么作用呢?相对于html,他又有怎样的新的定义与新理念在里面呢?为什么一些专家认为html5完全完成后,所有的工作 ...
随机推荐
- Numpy技巧: 由label获得相等矩阵
Numpy技巧: 由label获得相等矩阵 假设Label为: [ABAC] , 如何方便的得到一个矩阵, 其元素i,j表示第i位和第j位相等呢? 先把Label复制扩展成: m,m 的 ...
- OpenSSL&&libcurl库的交叉编译
一.编译前环境准备 使用的内核:4.15.0-118-generic(命令:uname -r可以查看) 交叉编译器:aarch64-linux-gnu-gcc curl源码:curl-7.72.0.t ...
- 阿里云日志Nginx日志分析
每分钟接口访问次数的前200条统计 not request_uri : "/heartbeat.html" | SELECT time_series(time, '1m', '%H ...
- 工控CTF_Modbus TCP
工控CTF_Modbus TCP 参考文章 https://blog.csdn.net/song123sh/article/details/128387982 https://www.anquanke ...
- 算法金 | 推导式、生成器、向量化、map、filter、reduce、itertools,再见 for 循环
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 不要轻易使用 For 循环 For 循环,老铁们在编程中经常用到的一个基本结构,特别是 ...
- SpringBoot 校验post请求参数
导读 前后端分离项目中,前端往后端传值时,后端都要做参数格式校验,比如校验数字最大值.最小值.是否允许为空.日期格式等等. 添加依赖 <!-- 参数校验 --> <dependenc ...
- Mybatis 一级缓存
Mybatis一级缓存介绍 什么是缓存 程序经常要调用的对象存在内容中,方法其使用时可以快速调用,不必去数据库或者其他持久化设备中查询,主要就是提高性能 Mybatis一级缓存 简介:一级缓存的作用域 ...
- 【RocketMQ 系列】 RocketMQ 双主双从(同步双写) 集群搭建
1. 各角色介绍 Producer:消息的发送者:举例:发信者 Consumer:消息接收者:举例:收信者 Broker:暂存和传输信息:举例:邮局 NameServer:管理Broker:举例:各个 ...
- oeasy教您玩转vim - 36 - # 插入字符
插入字符 回忆上节课内容 正则表达式 行头行尾 ^ 意味着行开头 $ 意味着行结尾 任意字符 . 代表任意字符 [a-z] 代表任意小写字母 字符数量 * 代表 0 到任意多个前字符 + 代表 1 ...
- 使用 useRequestEvent Hook 访问请求事件
title: 使用 useRequestEvent Hook 访问请求事件 date: 2024/7/23 updated: 2024/7/23 author: cmdragon excerpt: 摘 ...