LSTM推导

forward propagation

def lstm_cell_forward(xt, a_prev, c_prev, parameters):
"""
Implement a single forward step of the LSTM-cell as described in Figure (4) Arguments:
xt -- your input data at timestep "t", numpy array of shape (n_x, m).
a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m)
c_prev -- Memory state at timestep "t-1", numpy array of shape (n_a, m)
parameters -- python dictionary containing:
Wf -- Weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x)
bf -- Bias of the forget gate, numpy array of shape (n_a, 1)
Wi -- Weight matrix of the save gate, numpy array of shape (n_a, n_a + n_x)
bi -- Bias of the save gate, numpy array of shape (n_a, 1)
Wc -- Weight matrix of the first "tanh", numpy array of shape (n_a, n_a + n_x)
bc -- Bias of the first "tanh", numpy array of shape (n_a, 1)
Wo -- Weight matrix of the focus gate, numpy array of shape (n_a, n_a + n_x)
bo -- Bias of the focus gate, numpy array of shape (n_a, 1)
Wy -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1) Returns:
a_next -- next hidden state, of shape (n_a, m)
c_next -- next memory state, of shape (n_a, m)
yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m)
cache -- tuple of values needed for the backward pass, contains (a_next, c_next, a_prev, c_prev, xt, parameters) Note: ft/it/ot stand for the forget/update/output gates, cct stands for the candidate value (c tilda),
c stands for the memory value
""" # Retrieve parameters from "parameters"
Wf = parameters["Wf"]
bf = parameters["bf"]
Wi = parameters["Wi"]
bi = parameters["bi"]
Wc = parameters["Wc"]
bc = parameters["bc"]
Wo = parameters["Wo"]
bo = parameters["bo"]
Wy = parameters["Wy"]
by = parameters["by"] # Retrieve dimensions from shapes of xt and Wy
n_x, m = xt.shape
n_y, n_a = Wy.shape # Concatenate a_prev and xt (≈3 lines)
concat = np.zeros((n_x+n_a,m))
concat[: n_a, :] = a_prev
concat[n_a :, :] = xt # Compute values for ft, it, cct, c_next, ot, a_next using the formulas given figure (4) (≈6 lines)
ft = sigmoid(np.dot(Wf,concat)+bf)
it = sigmoid(np.dot(Wi,concat)+bi)
cct = np.tanh(np.dot(Wc,concat)+bc)
c_next = ft*c_prev + it*cct
ot = sigmoid(np.dot(Wo,concat)+bo)
a_next = ot*np.tanh(c_next) # Compute prediction of the LSTM cell (≈1 line)
yt_pred = softmax(np.dot(Wy, a_next) + by) # store values needed for backward propagation in cache
cache = (a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters) return a_next, c_next, yt_pred, cache

back propagation

def lstm_cell_backward(da_next, dc_next, cache):
"""
Implement the backward pass for the LSTM-cell (single time-step). Arguments:
da_next -- Gradients of next hidden state, of shape (n_a, m)
dc_next -- Gradients of next cell state, of shape (n_a, m)
cache -- cache storing information from the forward pass Returns:
gradients -- python dictionary containing:
dxt -- Gradient of input data at time-step t, of shape (n_x, m)
da_prev -- Gradient w.r.t. the previous hidden state, numpy array of shape (n_a, m)
dc_prev -- Gradient w.r.t. the previous memory state, of shape (n_a, m, T_x)
dWf -- Gradient w.r.t. the weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x)
dWi -- Gradient w.r.t. the weight matrix of the input gate, numpy array of shape (n_a, n_a + n_x)
dWc -- Gradient w.r.t. the weight matrix of the memory gate, numpy array of shape (n_a, n_a + n_x)
dWo -- Gradient w.r.t. the weight matrix of the save gate, numpy array of shape (n_a, n_a + n_x)
dbf -- Gradient w.r.t. biases of the forget gate, of shape (n_a, 1)
dbi -- Gradient w.r.t. biases of the update gate, of shape (n_a, 1)
dbc -- Gradient w.r.t. biases of the memory gate, of shape (n_a, 1)
dbo -- Gradient w.r.t. biases of the save gate, of shape (n_a, 1)
""" # Retrieve information from "cache"
(a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters) = cache # Retrieve dimensions from xt's and a_next's shape (≈2 lines)
n_x, m = xt.shape
n_a, m = a_next.shape # Compute gates related derivatives, you can find their values can be found by looking carefully at equations (7) to (10) (≈4 lines)
dot = da_next * np.tanh(c_next) * ot * (1 - ot)
dcct = (dc_next * it + ot * (1 - np.square(np.tanh(c_next))) * it * da_next) * (1 - np.square(cct))
dit = (dc_next * cct + ot * (1 - np.square(np.tanh(c_next))) * cct * da_next) * it * (1 - it)
dft = (dc_next * c_prev + ot *(1 - np.square(np.tanh(c_next))) * c_prev * da_next) * ft * (1 - ft) # Compute parameters related derivatives. Use equations (11)-(14) (≈8 lines)
dWf = np.dot(dft,np.concatenate((a_prev, xt), axis=0).T)
dWi = np.dot(dit,np.concatenate((a_prev, xt), axis=0).T)
dWc = np.dot(dcct,np.concatenate((a_prev, xt), axis=0).T)
dWo = np.dot(dot,np.concatenate((a_prev, xt), axis=0).T)
dbf = np.sum(dft, axis=1 ,keepdims = True)
dbi = np.sum(dit, axis=1, keepdims = True)
dbc = np.sum(dcct, axis=1, keepdims = True)
dbo = np.sum(dot, axis=1, keepdims = True) # Compute derivatives w.r.t previous hidden state, previous memory state and input. Use equations (15)-(17). (≈3 lines)
da_prev = np.dot(parameters['Wf'][:,:n_a].T,dft)+np.dot(parameters['Wi'][:,:n_a].T,dit)+np.dot(parameters['Wc'][:,:n_a].T,dcct)+np.dot(parameters['Wo'][:,:n_a].T,dot)
dc_prev = dc_next*ft+ot*(1-np.square(np.tanh(c_next)))*ft*da_next
dxt = np.dot(parameters['Wf'][:,n_a:].T,dft)+np.dot(parameters['Wi'][:,n_a:].T,dit)+np.dot(parameters['Wc'][:,n_a:].T,dcct)+np.dot(parameters['Wo'][:,n_a:].T,dot)
# parameters['Wf'][:, :n_a].T 每一行的 第 0 到 n_a-1 列的数据取出来
# parameters['Wf'][:, n_a:].T 每一行的 第 n_a 到最后列的数据取出来 # Save gradients in dictionary
gradients = {"dxt": dxt, "da_prev": da_prev, "dc_prev": dc_prev, "dWf": dWf,"dbf": dbf, "dWi": dWi,"dbi": dbi,
"dWc": dWc,"dbc": dbc, "dWo": dWo,"dbo": dbo} return gradients

LSTM推导的更多相关文章

  1. 【Deep Learning】RNN LSTM 推导

    http://blog.csdn.net/Dark_Scope/article/details/47056361 http://blog.csdn.net/hongmaodaxia/article/d ...

  2. 循环神经(LSTM)网络学习总结

    摘要: 1.算法概述 2.算法要点与推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 长短期记忆网络(Long Short Term Memory ne ...

  3. 程序猿 tensorflow 入门开发及人工智能实战

    tensorflow 中文文档: http://www.tensorfly.cn http://wiki.jikexueyuan.com/project/tensorflow-zh/ tensorfl ...

  4. 机器学习 —— 基础整理(八)循环神经网络的BPTT算法步骤整理;梯度消失与梯度爆炸

    网上有很多Simple RNN的BPTT(Backpropagation through time,随时间反向传播)算法推导.下面用自己的记号整理一下. 我之前有个习惯是用下标表示样本序号,这里不能再 ...

  5. LSTM简介以及数学推导(FULL BPTT)

    http://blog.csdn.net/a635661820/article/details/45390671 前段时间看了一些关于LSTM方面的论文,一直准备记录一下学习过程的,因为其他事儿,一直 ...

  6. 《神经网络的梯度推导与代码验证》之LSTM的前向传播和反向梯度推导

    前言 在本篇章,我们将专门针对LSTM这种网络结构进行前向传播介绍和反向梯度推导. 关于LSTM的梯度推导,这一块确实挺不好掌握,原因有: 一些经典的deep learning 教程,例如花书缺乏相关 ...

  7. lstm bptt推导

    深蓝 nlp 180429这个有详细的讲解

  8. GRU(Gated Recurrent Unit) 更新过程推导及简单代码实现

    GRU(Gated Recurrent Unit) 更新过程推导及简单代码实现 RNN GRU matlab codes RNN网络考虑到了具有时间数列的样本数据,但是RNN仍存在着一些问题,比如随着 ...

  9. RNN求解过程推导与实现

    RNN求解过程推导与实现 RNN LSTM BPTT matlab code opencv code BPTT,Back Propagation Through Time. 首先来看看怎么处理RNN. ...

  10. Theano:LSTM源码解析

    最难读的Theano代码 这份LSTM代码的作者,感觉和前面Tutorial代码作者不是同一个人.对于Theano.Python的手法使用得非常娴熟. 尤其是在两重并行设计上: ①LSTM各个门之间并 ...

随机推荐

  1. 一文读懂面试官都在问的Fastjson漏洞

    Fastjson1.2.24-RCE漏洞 漏洞简介 fastjson是阿里巴巴的开源JSON解析库,它可以解析JSON格式的字符串,支持将Java Bean序列化为JSON字符串,也可以从JSON字符 ...

  2. Springcloud 开始来了解

    为什么要学习springcloud? "微服务 "一词源于Martin Fowler 的名为 Microservices 的博文,简单地说, 微服务是系统架构上的一种设计风格, 它 ...

  3. harbor改造为https---血泪史

  4. docker部署gitlab CI/CD (二)终篇:部署gitlab runner和添加gitlab-ci.yml文件 终极踩坑版

    关于gitlab部署的教程还好,有的看,但到了cicd环节,简直痛苦面具,教程虽多,但断断续续,先不说大部分都是只截取片段,让人云里雾里,不会的看不懂,懂的不需要看,根据步骤跑不起来不说,改了一堆,完 ...

  5. odoo开发教程十一:视图综述

    一:视图标签等公共结构 name (必选) 用于通过名字查找标签 model: 与view相关联的model priority 当搜索查找view时,优先级最低的view会被返回 arch 视图lay ...

  6. 【.NET源码解读】Configuration组件及自动更新

    Configuration组件是.NET中一个核心的.非常重要的组件.它提供了一种方便的机制,用于从配置文件.环境变量.命令行参数等各种数据源中读取和配置应用程序,以满足不同环境下应用程序的需求. 在 ...

  7. 【jmeter】测试socket接口的简单应用

    一.场景 有一天开发问我,有没有什么工具可以测试socket,tcp,当时有点懵,这种需求还是少见 二.方法 使用Jmeter可以进行相关的测试 三.创建服务端环境 使用python搞个socket服 ...

  8. The shell

    The shell shell是什么? 如今的计算机有着多种多样的交互接口让我们可以进行指令的的输入,从炫酷的图像用户界面(GUI),语音输入甚至是 AR/VR 都已经无处不在. 这些交互接口可以覆盖 ...

  9. .Net8罕见的技术:MSIL的机器码简析

    前言 一般的只有最终的汇编代码才有机器码表示,然一个偶然的机会发现,MSIL(Microsoft intermediate language)作为一个中间语言表示,居然也有机器码,其实这也难怪,计算机 ...

  10. HTTP请求:requests的进阶使用方法浅析

    1 背景 上篇文章讲解了requests模块的基础使用,其中有get.put.post等多种请求方式,使用data.json等格式做为请求参数,在请求体中添加请求头部信息的常见信息,如:headers ...