一文读懂强化学习:RL全面解析与Pytorch实战
在本篇文章中,我们全面而深入地探讨了强化学习(Reinforcement Learning)的基础概念、主流算法和实战步骤。从马尔可夫决策过程(MDP)到高级算法如PPO,文章旨在为读者提供一套全面的理论框架和实用工具。同时,我们还专门探讨了强化学习在多个领域,如游戏、金融、医疗和自动驾驶等的具体应用场景。每个部分都提供了详细的Python和PyTorch代码示例,以助于更好地理解和应用这些概念。
关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。
一、引言
强化学习(Reinforcement Learning, RL)是人工智能(AI)和机器学习(ML)领域的一个重要子领域,与监督学习和无监督学习并列。它模仿了生物体通过与环境交互来学习最优行为的过程。与传统的监督学习不同,强化学习没有事先标记好的数据集来训练模型。相反,它依靠智能体(Agent)通过不断尝试、失败、适应和优化来学习如何在给定环境中实现特定目标。
强化学习的核心组成
强化学习的框架主要由以下几个核心组成:
状态(State):反映环境或系统当前的情况。
动作(Action):智能体在特定状态下可以采取的操作。
奖励(Reward):一个数值反馈,用于量化智能体采取某一动作后环境的反应。
策略(Policy):一个映射函数,指导智能体在特定状态下应采取哪一动作。
这四个元素共同构成了马尔可夫决策过程(Markov Decision Process, MDP),这是强化学习最核心的数学模型。
为什么强化学习重要?
实用性与广泛应用
强化学习的重要性首先体现在其广泛的应用价值。从自动驾驶、游戏AI、到量化交易、工业自动化,以及近年来在自然语言处理、推荐系统等方面的突破,强化学习都发挥着不可或缺的角色。
自适应与优化
传统的算法往往是静态的,即它们没有能力去适应不断变化的环境或参数。而强化学习算法则可以不断地适应和优化,这使它们能在更加复杂和动态的环境中表现出色。
推动AI研究前沿
强化学习也在推动人工智能的研究前沿,特别是在解决一些需要长期规划和决策的复杂问题上。例如,强化学习已成功地应用于围棋算法AlphaGo中,击败了人类世界冠军,这标志着AI在执行复杂任务方面取得了重大突破。
引领伦理与社会思考
随着强化学习在自动决策系统中的应用越来越广泛,如何设计公平、透明和可解释的算法也引发了众多伦理和社会问题,这需要我们更加深入地去探索和理解强化学习的各个方面。
二、强化学习基础
强化学习的核心是建模决策问题,并通过与环境的交互来学习最佳决策方案。这一过程常常是通过马尔可夫决策过程(Markov Decision Process, MDP)来描述和解决的。在本节中,我们将详细地探讨马尔可夫决策过程以及其核心组件:奖励、状态、动作和策略。
马尔可夫决策过程(MDP)
MDP是用来描述决策问题的数学模型,主要由一个四元组 ( (S, A, R, P) ) 组成。
状态空间(S): 表示所有可能状态的集合。
动作空间(A): 表示在特定状态下可能采取的所有动作的集合。
奖励函数(R): ( R(s, a, s') ) 表示在状态 ( s ) 下采取动作 ( a ) 并转移到状态 ( s' ) 时所获得的即时奖励。
转移概率(P): ( P(s' | s, a) ) 表示在状态 ( s ) 下采取动作 ( a ) 转移到状态 ( s' ) 的概率。
状态(State)
在MDP中,状态是用来描述环境或问题的现状。在不同应用中,状态可以有很多种表现形式:
- 在棋类游戏中,状态通常表示棋盘上各个棋子的位置。
- 在自动驾驶中,状态可能包括车辆的速度、位置、以及周围对象的状态等。
动作(Action)
动作是智能体(Agent)在某一状态下可以采取的操作。动作会影响环境,并可能导致状态的转变。
- 在股市交易中,动作通常是“买入”、“卖出”或“持有”。
- 在游戏如“超级马里奥”中,动作可能包括“跳跃”、“下蹲”或“向前移动”等。
奖励(Reward)
奖励是一个数值反馈,用于评估智能体采取某一动作的“好坏”。通常,智能体的目标是最大化累积奖励。
- 在迷宫问题中,到达目的地可能会得到正奖励,而撞到墙壁则可能会得到负奖励。
策略(Policy)
策略是一个从状态到动作的映射函数,用于指导智能体在每一状态下应采取哪一动作。形式上,策略通常表示为 ( \pi(a|s) ),代表在状态 ( s ) 下采取动作 ( a ) 的概率。
- 在游戏如“五子棋”中,策略可能是一个复杂的神经网络,用于评估每一步棋的优劣。
通过优化策略,我们可以使智能体在与环境的交互中获得更高的累积奖励,从而实现更优的性能。
三、常用强化学习算法
强化学习拥有多种算法,用于解决不同类型的问题。在本节中,我们将探讨几种常用的强化学习算法,包括他们的工作原理、意义以及应用实例。
值迭代(Value Iteration)
算法描述
值迭代是一种基于动态规划(Dynamic Programming)的方法,用于计算最优策略。主要思想是通过迭代更新状态值函数(Value Function)来找到最优策略。
算法意义
值迭代算法主要用于解决具有完全可观测状态和已知转移概率的MDP问题。它是一种“模型已知”的算法。
应用实例
值迭代经常用于路径规划、游戏(如迷宫问题)等环境中,其中所有状态和转移概率都是已知的。
Q学习(Q-Learning)
算法描述
Q学习是一种基于值函数的“模型无知”算法。它通过更新Q值(状态-动作值函数)来找到最优策略。
算法意义
Q学习算法适用于“模型无知”的场景,也就是说,智能体并不需要知道环境的完整信息。因此,Q学习特别适用于现实世界的问题。
应用实例
Q学习广泛用于机器人导航、电子商务推荐系统以及多玩家游戏等。
Policy Gradients(策略梯度)
算法描述
与基于值函数的方法不同,策略梯度方法直接在策略空间中进行优化。算法通过计算梯度来更新策略参数。
算法意义
策略梯度方法特别适用于处理高维或连续的动作和状态空间,而这些在基于值的方法中通常很难处理。
应用实例
策略梯度方法在自然语言处理(如机器翻译)、连续控制问题(如机器人手臂控制)等方面有广泛应用。
Actor-Critic(演员-评论家)
算法描述
Actor-Critic 结合了值函数方法和策略梯度方法的优点。其中,"Actor" 负责决策,"Critic" 负责评价这些决策。
算法意义
通过结合值函数和策略优化,Actor-Critic 能在各种不同的环境中实现更快和更稳定的学习。
应用实例
在自动驾驶、资源分配和多智能体系统等复杂问题中,Actor-Critic 方法被广泛应用。
四、PPO(Proximal Policy Optimization)算法
PPO是一种高效、可靠的强化学习算法,属于策略梯度家族的一部分。由于其高效和稳定的性质,PPO算法在各种强化学习任务中都有广泛的应用。
与强化学习的关系
PPO是用于解决马尔可夫决策过程(MDP)问题的算法。它通过优化策略(Policy)来让智能体在不同状态下选择最优动作,从而最大化预期的累积奖励。
原理
PPO的核心思想是通过限制策略更新的步长来避免太大的性能下降。这是通过引入一种特殊的目标函数实现的,该目标函数包含一个剪辑(Clipping)项来限制策略的改变程度。
具体的目标函数如下:
细节
多步优势估计: PPO通常与多步回报(Multi-Step Return)和优势函数(Advantage Function)结合使用,以减少估计误差。
自适应学习率: PPO通常使用自适应学习率和高级优化器(如Adam)。
并行采样: 由于PPO是一种“样本高效”的算法,通常与并行环境采样结合使用,以进一步提高效率。
代码举例
下面是使用Python和PyTorch实现PPO的简单示例:
import torch
import torch.nn as nn
import torch.optim as optim
# 定义策略网络
class PolicyNetwork(nn.Module):
def __init__(self, state_dim, action_dim):
super(PolicyNetwork, self).__init__()
self.fc = nn.Linear(state_dim, 128)
self.policy_head = nn.Linear(128, action_dim)
def forward(self, x):
x = torch.relu(self.fc(x))
return torch.softmax(self.policy_head(x), dim=-1)
# 初始化
state_dim = 4 # 状态维度
action_dim = 2 # 动作维度
policy_net = PolicyNetwork(state_dim, action_dim)
optimizer = optim.Adam(policy_net.parameters(), lr=1e-3)
epsilon = 0.2
# 采样数据(这里假设有一批样本数据)
states = torch.rand(10, state_dim)
actions = torch.randint(0, action_dim, (10,))
advantages = torch.rand(10)
# 计算旧策略的动作概率
with torch.no_grad():
old_probs = policy_net(states).gather(1, actions.unsqueeze(-1)).squeeze()
# PPO更新
for i in range(4): # Typically we run multiple epochs
action_probs = policy_net(states).gather(1, actions.unsqueeze(-1)).squeeze()
ratio = action_probs / old_probs
surr1 = ratio * advantages
surr2 = torch.clamp(ratio, 1-epsilon, 1+epsilon) * advantages
loss = -torch.min(surr1, surr2).mean()
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("PPO Update Done!")
这只是一个非常基础的示例,实际应用中还需要包括更多元素,如状态标准化、网络结构优化等。
五、强化学习实战
5.1 模型创建
在强化学习实战中,模型创建是第一步也是至关重要的一步。通常,这一阶段包括环境设置、模型架构设计和数据预处理等。以下是一个使用PyTorch实现强化学习模型的示例,这里我们使用一个简单的CartPole环境作为案例。
环境设置
首先,我们需要安装必要的库并设置环境。
pip install gym
pip install torch
接着,我们将导入这些库:
import gym
import torch
import torch.nn as nn
import torch.optim as optim
创建Gym环境
使用OpenAI的Gym库,我们可以方便地创建CartPole环境:
env = gym.make('CartPole-v1')
模型架构
接下来,我们设计一个简单的神经网络来作为策略网络。该网络将接收环境状态作为输入,并输出各个动作的概率。
class PolicyNetwork(nn.Module):
def __init__(self, input_dim, output_dim):
super(PolicyNetwork, self).__init__()
self.fc1 = nn.Linear(input_dim, 64)
self.fc2 = nn.Linear(64, output_dim)
def forward(self, state):
x = torch.relu(self.fc1(state))
action_probs = torch.softmax(self.fc2(x), dim=-1)
return action_probs
初始化模型和优化器
在定义了模型架构之后,我们需要对其进行初始化,并选择一个优化器。
input_dim = env.observation_space.shape[0] # 状态空间维度
output_dim = env.action_space.n # 动作空间大小
policy_net = PolicyNetwork(input_dim, output_dim)
optimizer = optim.Adam(policy_net.parameters(), lr=1e-2)
5.2 模型评估
模型评估通常包括在一系列测试环境下进行模拟运行,以及计算各种性能指标。
测试环境运行
以下代码展示了如何在Gym的CartPole环境中测试训练好的模型:
def evaluate_policy(policy_net, env, episodes=10):
total_rewards = 0
for i in range(episodes):
state = env.reset()
done = False
episode_reward = 0
while not done:
state_tensor = torch.FloatTensor(state).unsqueeze(0)
with torch.no_grad():
action_probs = policy_net(state_tensor)
action = torch.argmax(action_probs).item()
next_state, reward, done, _ = env.step(action)
episode_reward += reward
state = next_state
total_rewards += episode_reward
average_reward = total_rewards / episodes
return average_reward
# 使用上文定义的PolicyNetwork和初始化的env
average_reward = evaluate_policy(policy_net, env)
print(f"Average reward over {episodes} episodes: {average_reward}")
性能指标
性能指标可能包括平均奖励、方差、最大/最小奖励等。这些指标有助于我们了解模型在不同情况下的稳定性和可靠性。
# 在这里,我们已经计算了平均奖励
# 在更复杂的场景中,你可能还需要计算其他指标,如奖励的标准差等。
5.3 模型上线
模型上线通常包括模型的保存、加载和实际环境中的部署。
模型保存和加载
PyTorch提供了非常方便的API来保存和加载模型。
# 保存模型
torch.save(policy_net.state_dict(), 'policy_net_model.pth')
# 加载模型
loaded_policy_net = PolicyNetwork(input_dim, output_dim)
loaded_policy_net.load_state_dict(torch.load('policy_net_model.pth'))
部署到实际环境
模型部署的具体步骤取决于应用场景。在某些在线系统中,可能需要将PyTorch模型转换为ONNX或TensorRT格式以提高推理速度。
# 示例:将PyTorch模型转为ONNX格式
dummy_input = torch.randn(1, input_dim)
torch.onnx.export(policy_net, dummy_input, "policy_net_model.onnx")
总结
强化学习(Reinforcement Learning, RL)是人工智能中最具潜力和挑战性的研究方向之一。通过本篇文章,我们深入探讨了强化学习的核心概念,包括马尔可夫决策过程(Markov Decision Processes, MDP)以及其中的奖励、状态、动作和策略等要素。我们还介绍了多种主流的强化学习算法,如Q-Learning, DQN, 和PPO等,每一种算法都有其独特的优点和应用场景。
在强化学习实战部分,我们以CartPole环境为例,从模型创建到模型评估和上线,全方位地讲解了一个完整的RL项目的实施步骤。我们还提供了详尽的PyTorch代码示例和解释,帮助读者更好地理解和应用这些概念。
强化学习不仅在理论研究中占有重要地位,也在实际应用,如自动驾驶、金融交易和医疗诊断等多个领域有着广泛的应用前景。然而,强化学习也面临多个挑战,包括但不限于数据稀疏性、训练不稳定和环境模拟等。因此,掌握强化学习的基础知识和实战经验,将为解决这些复杂问题提供有力的工具和视角。
关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。
如有帮助,请多关注
TeahLead KrisChang,10+年的互联网和人工智能从业经验,10年+技术和业务团队管理经验,同济软件工程本科,复旦工程管理硕士,阿里云认证云服务资深架构师,上亿营收AI产品业务负责人。
一文读懂强化学习:RL全面解析与Pytorch实战的更多相关文章
- 一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm)
一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm) 2017-12-25 16:29:19 对于 A3C 算法感觉自己总是一知半解,现将其梳理一下,记录在此,也 ...
- 一文读懂对抗生成学习(Generative Adversarial Nets)[GAN]
一文读懂对抗生成学习(Generative Adversarial Nets)[GAN] 0x00 推荐论文 https://arxiv.org/pdf/1406.2661.pdf 0x01什么是ga ...
- 一文读懂HTTP/2及HTTP/3特性
摘要: 学习 HTTP/2 与 HTTP/3. 前言 HTTP/2 相比于 HTTP/1,可以说是大幅度提高了网页的性能,只需要升级到该协议就可以减少很多之前需要做的性能优化工作,当然兼容问题以及如何 ...
- 一文读懂AI简史:当年各国烧钱许下的愿,有些至今仍未实现
一文读懂AI简史:当年各国烧钱许下的愿,有些至今仍未实现 导读:近日,马云.马化腾.李彦宏等互联网大佬纷纷亮相2018世界人工智能大会,并登台演讲.关于人工智能的现状与未来,他们提出了各自的观点,也引 ...
- 一文读懂高性能网络编程中的I/O模型
1.前言 随着互联网的发展,面对海量用户高并发业务,传统的阻塞式的服务端架构模式已经无能为力.本文(和下篇<高性能网络编程(六):一文读懂高性能网络编程中的线程模型>)旨在为大家提供有用的 ...
- 从HTTP/0.9到HTTP/2:一文读懂HTTP协议的历史演变和设计思路
本文原作者阮一峰,作者博客:ruanyifeng.com. 1.引言 HTTP 协议是最重要的互联网基础协议之一,它从最初的仅为浏览网页的目的进化到现在,已经是短连接通信的事实工业标准,最新版本 HT ...
- 即时通讯新手入门:一文读懂什么是Nginx?它能否实现IM的负载均衡?
本文引用了“蔷薇Nina”的“Nginx 相关介绍(Nginx是什么?能干嘛?)”一文部分内容,感谢作者的无私分享. 1.引言 Nginx(及其衍生产品)是目前被大量使用的服务端反向代理和负载均衡 ...
- 一文读懂MySQL的事务隔离级别及MVCC机制
回顾前文: 一文学会MySQL的explain工具 一文读懂MySQL的索引结构及查询优化 (同时再次强调,这几篇关于MySQL的探究都是基于5.7版本,相关总结与结论不一定适用于其他版本) 就软件开 ...
- 一文读懂Java动态代理
作者 :潘潘 日期 :2020-11-22 事实上,对于很多Java编程人员来说,可能只需要达到从入门到上手的编程水准,就能很好的完成大部分研发工作.除非自己强主动获取,或者工作倒逼你学习,否则我们好 ...
- Java8 函数式【1】:一文读懂逆变
Java8 函数式[1]:一文读懂逆变 禁止转载 pure function 协变 逆变 Java8 引入了函数式接口,从此方法传参可以传递函数了,有人说: 不就是传一个方法吗,语法糖! lambda ...
随机推荐
- 从TL、ITL到TT
1.概述 ThreadLocal(TL)是Java中一种线程局部变量实现机制,他为每个线程提供一个单独的变量副本,保证多线程场景下,变量的线程安全.经常用于代替参数的显式传递. Inheritable ...
- PHP递归和循环的速度测试
本文于 2017-12-05 重新整理. 写了一个可以对 $_GET, $_POST 等输入进行过滤的函数,递归实现如下: function array_map_recursive($filters, ...
- Mysql高级2-SQL性能分析
一.SQL执行频率 MySQL客户端 连接成功后,通过show [session | global] status 命令可以提供服务器状态信息,通过如下指令,可以查看当前数据库的insert,upda ...
- 2021-7-12 VUE的生命周期
挂载: beforeCreate created beforeMount mounted:el挂载到实例上时运行 更新: beforeUpdate updated 销毁: beforeDestory ...
- 自用 .net C# CSV文件写入读取工具类
using System.Data; using System.IO; using System.Linq; using System.Text; using System.Text.RegularE ...
- 小议ml.NET机器学习与人机责任划分
最近,特斯拉宣布召回110万辆车,名义上是纠正单踏板不良习惯,背后原因可能是这些车辆的电子控制单元存在缺陷,可能导致刹车失灵(潮州等交通事故至今没有定论).这个事件引起了人们对于机器学习技术和人机责任 ...
- 【go笔记】简单的http服务
前言 Go语言通过内置的标准库net/http可以非常方便地实现web服务.不借助任何框架,单凭标准库,50行代码内即可实现简单的web服务. http的ListenAndServe()函数原型: f ...
- 开源.NetCore通用工具库Xmtool使用连载 - HTTP请求篇
[Github源码] <上一篇> 介绍了Xmtool工具库中的XML操作类库,今天我们继续为大家介绍其中的HTTP请求类库. 在现如今的软件需求场景中,HTTP网络请求几乎是开发过程中必然 ...
- 自定义组件使用v-model
场景描述 我们在一个系统中,会出现这样的情况, 有一个联系人的下拉框,这个下拉框中的数据是从服务端获取的. 在很多页面都需要使用这个联系人(下拉框). 我们通常是这样做的: 写一个下拉框组件然后调用接 ...
- 如何在达梦数据库中追踪慢SQL
在达梦数据库中,我们可以通过开启日志记录和设置最小执行时间来追踪慢SQL.下面是具体的步骤: 1. 修改dm.ini文件 使用以下命令编辑dm.ini文件: cd /home/dmdba/dmdbms ...