4.1 数列的概念2 (递推公式、前n项和)
\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【基础过关系列】高二数学同步精品讲义与分层练习(人教A版2019)]
( https://www.zxxk.com/docpack/2875423.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)
选择性第二册同步巩固,难度2颗星!
基础知识
递推公式
若已知数列\(\{a_n\}\)的第一项\(a_1\)(或前\(n\)项),且任一项\(a_n\)和它的前一项\(a_{n-1}\)(或前\(n\)项)间的关系可以用一公式表示,那么这个公式叫做这个数列的递推公式.
解释
(1) 举例:\(a_1\)(初始条件),\(a_n=2a_{n-1}+3n(n≥2)\)(递推关系);
\(a_1=1\) ,\(a_2=2\)(初始条件) ,\(a_n=3a_{n-1}-2a_{n-2} (n≥3)\)(递推关系).
(2) 通项公式与递推公式的异同
不同点 | 相同点 | |
通项公式 | 可根据某项的序号,直接用代入法求出该项 | 都可确定一个数列,都可求出数列的任何一项 |
递推公式 | 可根据第1项或前几项的值,通过一次或多次赋值逐项求出数列的项,直至求出所需的项 |
【例1】你能写出满足数列\(1,1,2,3,5,8…\)的一个递推公式么?
答案 \(a_1=1\) ,\(a_2=1\) ,\(a_n=a_{n-1}+a_{n-2} (n≥3)\).
【例2】已知数列\(\{a_n\}\)中,\(a_1=1\),\(a_{n+1}=3a_n-1\),则\(a_3\)等于 .
解 \(a_2=3a_1-1=2\),\(a_3=3a_2-1=5.\)
an与Sn的关系
若\(S_n\)为数列\(\{a_n\}\)的前n项和,即\(S_n=a_1+a_2+...+a_n\).
则 \(a_n= \begin{cases}S_1 & , n=1 \\ S_n-S_{n-1} & , n \geq 2\end{cases}\).
解释
(1) 若已知列\(\{a_n\}\)的前\(n\)项和\(S_n\),可利用公式\(a_n= \begin{cases}S_1 & , n=1 \\ S_n-S_{n-1} & , n \geq 2\end{cases}\)求数列通项公式\(a_n\),
(2) 证明 若\(S_n\)为数列\(\{a_n\}\)的前\(n\)项和,根据定义可得,\(S_1=a_1\),
\(S_n=a_1+a_2+...+a_{n-1} +a_n\) (1),\(S_{n-1}=a_1+a_2+...+a_{n-1}\) (2).
故当\(n=1\)时,\(a_n=a_1=S_1\);
当\(n≥2\)时,由(1)-(2)得\(S_n-S_{n-1}=a_n\),
即 \(a_n= \begin{cases}S_1 & , n=1 \\ S_n-S_{n-1} & , n \geq 2\end{cases}\).
基本方法
【题型1】 递推公式
【典题1】 已知数列\(\{a_n\}\)满足\(a_1=1\), \(a_n=a_{n-1}+\dfrac{1}{n(n-1)}(n \geq 2)\),写出该数列前\(5\)项,并归纳出它的一个通项公式.
解析 \(a_1=1\), \(a_2=a_1+\dfrac{1}{2 \times 1}=1+\dfrac{1}{2}=\dfrac{3}{2}\), \(a_3=a_2+\dfrac{1}{3 \times 2}=\dfrac{3}{2}+\dfrac{1}{6}=\dfrac{5}{3}\),
\(a_4=a_3+\dfrac{1}{4 \times 3}=\dfrac{5}{3}+\dfrac{1}{12}=\dfrac{7}{4}\), \(a_5=a_4+\dfrac{1}{5 \times 4}=\dfrac{7}{4}+\dfrac{1}{20}=\dfrac{9}{5}\).
故数列的前\(5\)项分别为 \(1, \dfrac{3}{2}, \dfrac{5}{3}, \dfrac{7}{4}, \dfrac{9}{5}\).
由于 \(1=\dfrac{2 \times 1-1}{1}\), \(\dfrac{3}{2}=\dfrac{2 \times 2-1}{2}\), \(\dfrac{5}{3}=\dfrac{2 \times 3-1}{3}\),\(\dfrac{7}{4}=\dfrac{2 \times 4-1}{4}\),\(\dfrac{9}{5}=\dfrac{2 \times 5-1}{5}\),
故数列\(\{a_n\}\)的一个通项公式为 \(a_n=\dfrac{2 n-1}{n}=2-\dfrac{1}{n}\).
【巩固练习】
1.下列给出的图形中,星星的个数构成一个数列,则该数列的一个递推公式可以是( )
A.\(a_{n+1}=a_n+n,n∈N^*\) \(\qquad \qquad \qquad \qquad \qquad\) B.\(a_n=a_{n-1}+n,n∈N^*,n⩾2\)
C.\(a_{n+1}=a_n+(n+1),n∈N^*,n⩾2\) \(\qquad \qquad \qquad\) D.\(a_n=a_{n-1}+(n-1),n∈N^*,n⩾2\)
2.数列\(\{a_n\}\)中,\(a_2=1\),且\(a_{n+1}=na_n\),则\(a_3=\)\(\underline{\quad \quad}\).
3.在数列\(\{a_n\}\)中,已知\(a_1=2\),\(a_2=7\),\(a_{n+2}\)等于\(a_n a_{n+1} (n∈N^*)\)的个位数,则\(a_{2017}=\)\(\underline{\quad \quad}\).
4.在数列\(\{x_n \}\)中, \(\dfrac{2}{x_n}=\dfrac{1}{x_{n-1}}+\dfrac{1}{x_{n+1}}(n \geqslant 2)\),且 \(x_2=\dfrac{2}{3}\), \(x_4=\dfrac{2}{5}\),则\(x_{10}=\)\(\underline{\quad \quad}\).
5.设数列\(\{a_n\}\)满足\(a_{n+1}=a_n^2-na_n+1\),\(n=1,2,3,…\),\(a_1=2\),通过求\(a_2\),\(a_3\)猜想\(a_n\)的一个通项公式为\(\underline{\quad \quad}\).
6.已知数列\(\{a_n\}\)的第一项是\(1\),以后各项由公式\(a_{n-1}=2a_n-2(n>1)\)给出,写出这个数列的前\(5\)项,并猜下它的一个通项公式(不需要证明).
参考答案
答案 \(B\)
解析 根据题意,可得\(a_1=1\),\(a_2=3\),\(a_3=6\),\(a_4=10\),
发现规律: \(a_n=\dfrac{n(n+1)}{2}\),
而 \(a_{n+1}-a_n=\dfrac{(n+1)(n+2)}{2}-\dfrac{n(n+1)}{2}=\dfrac{n+1}{2}[(n+2)-n]=n+1\)
故\(a_{n+1}=a_n+n+1\)成立,
即\(a_n=a_{n-1}+n,n∈N^*,n⩾2\),
故选:\(B\).答案 \(2\)
答案 \(2\)
解析 数列\(\{a_n\}\),\(a_1=2\),\(a_2=7\),\(a_{n+2}\)等于\(a_n a_{n+1} (n∈N^*)\)的个位数,
\(\therefore a_2\cdot a_1=14\),\(\therefore a_3=4\),
同理可得:\(a_4=8,a_5=2,a_6=6,a_7=2,a_8=2,a_9=4,a_{10}=8,…\),
所以数列从第\(3\)项开始呈现周期性出现,周期为\(6\),即\(a_{n+6}=a_n,n≥3\),
则\(a_{2017}=a_{335×6+7}=a_7=2\).答案 \(\dfrac{2}{11}\)
解析 由于在数列\(\{x_n \}\)中, \(\dfrac{2}{x_n}=\dfrac{1}{x_{n-1}}+\dfrac{1}{x_{n+1}}(n \geqslant 2)\),且 \(x_2=\dfrac{2}{3}\), \(x_4=\dfrac{2}{5}\),
则 \(\dfrac{2}{x_3}=\dfrac{1}{x_2}+\dfrac{1}{x_4}=\dfrac{3}{2}+\dfrac{5}{2}=4\),故 \(x_3=\dfrac{2}{4}\),
同理得到 \(x_5=\dfrac{2}{6}\),所以 \(x_n=\dfrac{2}{n+1}\),故得到 \(x_{10}=\dfrac{2}{11}\),
故答案为 \(\dfrac{2}{11}\).答案 \(a_n=n+1\)
解析 \(\because a_1=2\),\(a_{n+1}=a_n^2-na_n+1\),
\(\therefore a_2=a_1^2-a_1+1=3\),\(a_3=a_2^2-2a_2+1=4\),\(a_4=a_3^2-3a_3+1=5\),
故猜想\(a_n=n+1\).答案 \(a_1=1\), \(a_2=\dfrac{3}{2}\), \(a_3=\dfrac{7}{4}\), \(a_4=\dfrac{15}{8}\), \(a_5=\dfrac{31}{16}\), \(a_n=\dfrac{2^n-1}{2^{n-1}}\) .
解析 \(\because a_{n-1}=2a_n-2(n>1)\),
\(\therefore a_n=1+\dfrac{1}{2} a_{n-1}(n>1)\).
又\(a_1=1\), \(\therefore a_2=1+\dfrac{1}{2} a_1=1+\dfrac{1}{2} \times 1=\dfrac{3}{2}\),
\(a_3=1+\dfrac{1}{2} a_2=1+\dfrac{1}{2} \times \dfrac{3}{2}=\dfrac{7}{4}\), \(a_4=1+\dfrac{1}{2} a_3=1+\dfrac{1}{2} \times \dfrac{7}{4}=\dfrac{15}{8}\),
\(a_5=1+\dfrac{1}{2} a_5=1+\dfrac{1}{2} \times \dfrac{15}{8}=\dfrac{31}{16}\),
\(\therefore\) 这个数列的前\(5\)项是\(a_1=1\), \(a_2=\dfrac{3}{2}\), \(a_3=\dfrac{7}{4}\), \(a_4=\dfrac{15}{8}\), \(a_5=\dfrac{31}{16}\),
可归纳得数列的通项公式\(a_n=\dfrac{2^n-1}{2^{n-1}}\) .
【题型2】 通项公式与前n项和
【典题1】 已知下面各数列\(\{a_n\}\)的前\(n\)项和\(S_n\)的公式,求\(\{a_n\}\)}的通项公式.
(1) \(S_n=2n^2-3n\); \(\qquad \qquad\) (2) \(S_n=3^n-2\).
解析 (1)当\(n=1\)时,\(a_1=S_1=2×1^2-3×1=-1\);
当\(n≥2\)时,\(S_{n-1}=2(n-1)^2-3(n-1)=2n^2-7n+5\),
则\(a_n=S_n-S_{n-1}=(2n^2-3n)-(2n^2-7n+5)=2n^2-3n-2n^2+7n-5=4n-5\).
此时若\(n=1\),则\(a_n=4n-5=4×1-5=-1=a_1\),
故\(a_n=4n-5\).
(2)当\(n=1\)时,\(a_1=S_1=3^1-2=1\);
当\(n≥2\)时,\(S_{n-1}=3^(n-1)-2\),
则\(a_n=S_n-S_{n-1}=(3^n-2)-(3^{n-1}-2)=3^n-3^{n-1}=3⋅3^{n-1}-3^{n-1}=2⋅3^{n-1}\).
\(a_1=1\)不满足\(a_n=2⋅3^{n-1}\),
故 \(a_n= \begin{cases}1, & n=1 \\ 2 \cdot 3^{n-1}, & n \geq 2\end{cases}\).
点拨 若题目中已知数列前\(n\)项和\(S_n\),可利用公式\(a_n= \begin{cases}S_1 & , n=1 \\ S_n-S_{n-1} & , n \geq 2\end{cases}\)求数列的通项公式\(a_n\),注意分类讨论,最后要检验\(a_1\)是否满足\(a_n=f(n)(n≥2)\).
【典题2】 已知数列\(\{a_n\}\)的前\(n\)项和为\(S_n=n^2⋅a_n (n⩾2)\),而\(a_1=1\),通过计算\(a_2,a_3,a_4\),猜想\(a_n\)等于( )
A. \(\dfrac{2}{(n+1)^2}\) \(\qquad \qquad \qquad \qquad\) B. \(\dfrac{2}{n(n+1)}\) \(\qquad \qquad \qquad \qquad\) C. \(\dfrac{1}{2^n-1}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{1}{2 n-1}\)
解析 (1)\(\because S_n=n^2 a_n\),\(\therefore a_{n+1}=S_(n+1)-S_n=(n+1)^2 a_{n+1}-n^2 a_n\)
\(\therefore a_{n+1}=\dfrac{n}{n+2} a_n\),
\(\therefore a_2=\dfrac{1}{1+2}=\dfrac{1}{3}\), \(a_3=\dfrac{2}{2+2} \cdot \dfrac{1}{3}=\dfrac{1}{6}\),
猜测 \(a_n=\dfrac{2}{n(n+1)}\),
故选:\(B\).
【巩固练习】
1.已知数列\(\{a_n\}\)的前n项和为\(S_n\),若\(S_n =\dfrac{1}{n}\),\(n∈N^*\),则\(a_2=\)( )
A. \(-\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\) B. \(-\dfrac{1}{6}\) \(\qquad \qquad \qquad \qquad\) C. \(\dfrac{1}{6}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{1}{2}\)
2.在一个数列中,如果每一项与它的后一项的和为同一个常数,我们把这个数列叫做“等和数列”,这个常数叫做该数列的公和,已知数列\(\{a_n\}\)是等和数列且\(a_1=1\),公和为\(4\),则数列\(\{a_n\}\)的前\(n\)项和\(S_n\)的计算公式为\(S_n=\)\(\underline{\quad \quad}\).
3.已知数列\(\{a_n\}\)的通项公式为\(a_n=\dfrac{1}{(n+1) \sqrt{n}+n \sqrt{n+1}}\left(n \in N^*\right)\),其前\(n\)项和为\(S_n\),则在数列\(S_1,S_2,…,S_{2019}\)中,有理数项的项数为\(\underline{\quad \quad}\).
4.已知数列\(\{a_n\}\)的前\(n\)项和\(S_n=n^2+2\),求此数列的通项公式.
5.已知数列\(\{a_n\}\)的前n项和\(S_n\)满足\(S_n=\dfrac{1}{3}\left(a_n-1\right)\left(n \in N^*\right)\).
(1)求\(a_1,a_2,a_3,a_4\);
(2)由\(a_1,a_2,a_3,a_4\)的值猜想这个数列的通项公式(不用证明).
参考答案
答案 \(A\)
解析 根据题意,数列\(\{a_n\}\)的前\(n\)项和 \(S_n =\dfrac{1}{n}\),
则\(a_2=S_2-S_1=\dfrac{1}{2}-1=-\dfrac{1}{2}\);
故选:\(A\).答案 \(S_n=\left\{\begin{array}{l}
2 n, n \text { 为偶数 } \\
2 n-1, n \text { 为奇数 }
\end{array}\right.\)
解析 由题意知,\(a_n+a_{n+1}=4\),且\(a_1=1\),
所以\(a_1+a_2=4\),得\(a_2=3,a_3=1,a_4=3\),
则\(a_n=\left\{\begin{array}{l}
1, n \text { 为奇数 } \\
3, n \text { 为偶数 }
\end{array}\right.\),
当\(n\)为偶数时\(S_n=(1+3)+(1+3)+(1+3)+⋯+(1+3)=4×\dfrac{n}{2}=2n\),
当\(n\)为奇数时\(S_n=(1+3)+(1+3)+⋯(1+3)+1=4×\dfrac{n-1}{2}+1=2n-1\),
故\(S_n=\left\{\begin{array}{l}
2 n, n \text { 为偶数 } \\
2 n-1, n \text { 为奇数 }
\end{array}\right.\).答案 \(43\)
解析 由题意,可知: \(a_n=\dfrac{1}{(n+1) \sqrt{n}+n \sqrt{n+1}}=\dfrac{(n+1) \sqrt{n}-n \sqrt{n+1}}{[(n+1) \sqrt{n}+n \sqrt{n+1}][(n+1) \sqrt{n}-n \sqrt{n+1}]}\)
\(=\dfrac{(n+1) \sqrt{n}-n \sqrt{n+1}}{n(n+1)}=\dfrac{\sqrt{n}}{n}-\dfrac{\sqrt{n+1}}{n+1}\).
\(\therefore S_n=a_1+a_2+\cdots+a_n=1-\dfrac{\sqrt{2}}{2}+\dfrac{\sqrt{2}}{2}-\dfrac{\sqrt{3}}{3}+\cdots+\dfrac{\sqrt{n}}{n}-\dfrac{\sqrt{n+1}}{n+1}=1-\dfrac{\sqrt{n+1}}{n+1}\).
\(\therefore S_3, S_8, S_{15} \cdots\)为有理项,
又\(\because\) 下标\(3,8,15,…\)的通项公式为\(b_n=n^2-1(n⩾2)\),
\(\therefore n^2-1⩽2019\),且\(n⩾2\),解得:\(2⩽n⩽44\),
\(\therefore\) 有理项的项数为\(44-1=43\).答案 \(a_n=\left\{\begin{array}{l}
3, n=1 \\
2 n-1, n \geq 2
\end{array}\right.\)
解析 当\(n≥2\)时,\(a_n=S_n-S_{n-1}=n^2+2-(n-1)^2-2=2n-1\);
当\(n=1\)时,\(a_1=S_1=1^2+2=3\),不适合上式,
故 \(a_n=\left\{\begin{array}{l}
3, n=1 \\
2 n-1, n \geq 2
\end{array}\right.\).答案 (1) \(a_1=-\dfrac{1}{2}, \quad a_2=\dfrac{1}{4}, \quad a_3=-\dfrac{1}{8}, \quad a_4=\dfrac{1}{16}\);(2) \(a_n=\left(-\dfrac{1}{2}\right)^n\).
解析 (1) \(\because S_1=a_1\), \(S_n=\dfrac{1}{3}\left(a_n-1\right)\),
\(\therefore a_1=\dfrac{1}{3}\left(a_1-1\right)\), \(\therefore a_1=-\dfrac{1}{2}\),
\(\therefore S_2=\dfrac{1}{3}\left(a_2-1\right)=a_1+a_2\), \(\therefore a_2=\dfrac{1}{4}\),
同理可得 \(a_3=-\dfrac{1}{8}, \quad a_4=\dfrac{1}{16}\),
(2)由\(a_1,a_2,a_3,a_4\)的值猜想这个数列的通项公式 \(a_n=\left(-\dfrac{1}{2}\right)^n\).
分层练习
【A组---基础题】
1.在数列\(\{a_n\}\)中, \(a_1=\dfrac{1}{2}\), \(a_{n+1}=1-\dfrac{1}{a_n}\) ,则\(a_5=\)( )
A.\(2\) \(\qquad \qquad \qquad \qquad\) B.\(3\) \(\qquad \qquad \qquad \qquad\) C.\(-1\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{1}{2}\)
2.设数列\(\{a_n\}\)满足\(a_1=2\), \(a_{n+1}=1-\dfrac{1}{a_n}\left(n \in \boldsymbol{N}^*\right)\),则\(a_{2019}=\)( )
A.\(2\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\) C.\(-\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\) D.\(-1\)
3.已知数列\(\{a_n\}\)满足:\(a_1=m\),\(m\)为正整数, \(a_{n+1}=\left\{\begin{array}{l}
\dfrac{a_n}{2}, \text { 当 } a_n \text { 为偶数时 } \\
3 a_n+1, \text { 当 } a_n \text { 为奇数时 }
\end{array}\right.\),若\(a_6=1\),则\(m\)所有可能的取值为( )
A.\(\{4,5\}\) \(\qquad \qquad \qquad \qquad\) B.\(\{4,32\}\) \(\qquad \qquad \qquad \qquad\) C.\(\{4,5,32\}\) \(\qquad \qquad \qquad \qquad\) D.\(\{5,32\}\)
4.已知数列\(\{a_n\}\)的前\(n\)项和\(S_n=3^n (λ-n)-6\),若数列\(\{a_n\}\)单调递减,则\(λ\)的取值范围是( )
A.\((-∞,2)\) \(\qquad \qquad \qquad \qquad\) B.\((-∞,3)\) \(\qquad \qquad \qquad \qquad\) C.\((-∞,4)\) \(\qquad \qquad \qquad \qquad\) D.\((-∞,5)\)
5.(多选)定义“等积数列”:在一个数列中,如果每一项与它的后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积,已知数列\(\{a_n\}\)是等积数列,且\(a_1=3\),前\(7\)项的和为\(14\),则下列结论正确的是( )
A.\(a_{n+2}=a_n\) \(\qquad \qquad \qquad\) B. \(a_2=\dfrac{2}{3}\) \(\qquad \qquad \qquad\) C.公积为\(1\) \(\qquad \qquad \qquad\) D.\(a_n a_{n+1} a_{n+2}=6\)
6.已知数列\(\{a_n\}\)中,\(a_1=3\),\(a_{n+1}=3a_n+2\),则\(a_3=\)\(\underline{\quad \quad}\).
7.已知数列\(\{a_n\}\)满足:\(a_1=2\), \(a_{n+1}=\dfrac{a_n-1}{a_n}\),猜想数列\(\{a_n\}\)的前\(2014\)项的和\(S_{2014}=\)\(\underline{\quad \quad}\).
8.若数列\(\{a_n\}\)的前\(n\)项和\(S_n=2n^2-3n+2\),则它的通项公式\(a_n\)是\(\underline{\quad \quad}\).
9.已知数列\(\{a_n\}\)的通项公式和为 \(S_n=\dfrac{n(7 n+3)}{2}\),\(n∈N^*\),现从前\(m\)项:\(a_1,a_2,…,a_m\)中抽出一项(不是 也不是\(a_m\),余下各项的算术平均数为\(40\),则抽出的是第\(\underline{\quad \quad}\)项.
10.数列\(\{a_n\}\)的前n项和是\(S_n\).若\(2S_n=na_n+2(n⩾2,n∈N^* )\),\(a_2=2\),则\(a_1=\)\(\underline{\quad \quad}\);\(a_n=\)\(\underline{\quad \quad}\).
11.数列\(\{a_n\}\)前\(n\)项和为\(S_n\),且\(S_n=an^2+bn+c(a,b,c∈R)\),已知\(a_1=-28\),\(S_2=-52\),\(S_5=-100\).
(1)求数列\(\{a_n\}\)的通项公式.\(\qquad \qquad\) (2)求使得\(S_n\)最小的序号\(n\)的值.
12.(1)在数列\(\{a_n\}\)中,\(a_1=1\), \(a_{n+1}=\dfrac{2 a_n}{2+a_n}\),\(n∈N^*\).猜想这个数列的通项公式.
(2)已知正项数列\(\{a_n\}\)的前\(n\)项和\(S_n\),满足 \(S_n=\dfrac{1}{2}\left(a_n+\dfrac{1}{a_n}\right)\)\((n∈N^* )\),求出\(a_1,a_2,a_3\),并推测\(a_n\)的表达式.
参考答案
答案 \(C\)
解析 \(a_1=\dfrac{1}{2}\), \(a_{n+1}=1-\dfrac{1}{a_n}\) ,
则\(a_2=1-2=-1\),\(a_3=1+1=2\),\(a_4=1-\dfrac{1}{2}=\dfrac{1}{2}\),\(a_5=1-2=-1\),
故选:\(C\).答案 \(D\)
解析 数列\(\{a_n\}\)满足\(a_1=2\), \(a_{n+1}=1-\dfrac{1}{a_n}\left(n \in \boldsymbol{N}^*\right)\),
则\(a_2=1-\dfrac{1}{2}=\dfrac{1}{2}\),同理可得:\(a_3=-1\),\(a_4=2\),\(a_5=\dfrac{1}{2}\),\(…\)
可得\(a_{n+3}=a_n\).
\(a_{2019}=a_3 \times 672+3=a_3=-1\).
故选:\(D\).答案 \(C\)
解析 \(\because a_6=1\),
\(\therefore a_5\)必为偶数, \(\therefore a_6=\dfrac{a_5}{2}=1\),解得\(a_5=2\).
当\(a_4\)为偶数时, \(a_5=\dfrac{a_4}{2}\),解得\(a_4=4\);
当\(a_4\)为奇数时,\(a_5=3a_4+1=2\),解得\(a_4=\dfrac{1}{3}\),舍去.
\(\therefore a_4=4\).
当\(a_3\)为偶数时, \(a_4=\dfrac{a_3}{2}=4\),解得\(a_3=8\);
当\(a_3\)为奇数时,\(a_4=3a_3+1=4\),解得\(a_3=1\).
当\(a_3=8\)时,当\(a_2\)为偶数时, \(a_3=\dfrac{a_2}{2}=8\),解得\(a_2=16\);
当\(a_2\)为奇数时,\(a_3=3a_2+1=8\),解得 \(a_2=\dfrac{7}{3}\),舍去.
当\(a_3=1\)时,当\(a_2\)为偶数时, \(a_3=\dfrac{a_2}{2}=1\),解得\(a_2=2\);
当\(a_2\)为奇数时,\(a_3=3a_2+1=1\),解得\(a_2=0\),舍去.
当\(a_2=16\)时,当\(a_1\)为偶数时,\(a_2=\dfrac{a_1}{2}=16\),解得\(a_1=32=m\);
当\(a_1\)为奇数时,\(a_2=3a_1+1=16\),解得\(a_1=5=m\).
当\(a_2=2\)时,当\(a_1\)为偶数时,\(a_2=\dfrac{a_1}{2}=2\),解得\(a_1=4=m\);
当\(a_1\)为奇数时,\(a_2=3a_1+1=2\),解得\(a_1=\dfrac{1}{3}\),舍去.
综上可得\(m=4,5,32\).
故选:\(C\).答案 \(A\)
解析 \(\because S_n=3^n (λ-n)-6\),① \(\therefore S_{n-1}=3^{n-1} (λ-n+1)-6,n>1\),②
①-②得数列\(a_n=3^{n-1} (2λ-2n-1)(n>1,n∈N^*)\)为单调递减数列,
\(\therefore a_n>a_{n+1}\),且\(a_1>a_2\),
\(\therefore 3^{n-1} (2λ-2n-1)>3^n (2λ-2n-3)\),且\(λ<2\),
化为\(λ<n+2,(n>1)\),且\(λ<2\),
\(\therefore λ<2\),
\(\therefore λ\)的取值范围是\((-∞,2)\).
故选:\(A\).答案 \(AB\)
解析 设\(a_n a_{n+1}=k\)(\(k\)为常数),则\(a_{n+1} a_{n+2}=k\),
所以 \(\dfrac{a_{n+2}}{a_n}=1\),即\(a_{n+2}=a_n\),故\(A\)正确,
\(\because\)前\(7\)项的和为\(14\),\(\therefore 3(a_1+a_2 )+a_1=14\),
\(\because a_1=3\), \(\therefore a_2=\dfrac{2}{3}\),
\(\therefore a_n a_{n+1}=2\),即公积为\(2\),故\(B\)正确,\(C\)错误,
当\(n\)为奇数时,\(a_n a_{n+1} a_{n+2}=6\);
当\(n\)为偶数时, \(a_n a_{n+1} a_{n+2}=\dfrac{4}{3}\),故\(D\)错误.
故选:\(AB\).答案 \(35\)
解析 \(a_1=3\),则\(a_2=3a_1+2=3×3+2=11\),\(a_3=3a_2+2=3×11+2=35\).答案 \(\dfrac{2017}{2}\)
解析 \(\because a_1=2\),\(a_{n+1}=\dfrac{a_n-1}{a_n}\),
\(\therefore a_2=\dfrac{2-1}{2}=\dfrac{1}{2}\), \(a_3=\dfrac{\dfrac{1}{2}-1}{\dfrac{1}{2}}=-1\), \(a_4=\dfrac{-1-1}{-1}=2\),
\(\therefore\)数列\(\{a_n\}\)是以\(3\)为周期的数列,
又 \(S_3=a_1+a_2+a_3=2+\dfrac{1}{2}-1=\dfrac{3}{2}\),
\(\therefore S_{2014}=S_{2013}+a_{2014}=671 \times \dfrac{3}{2}+a_1=\dfrac{2013}{2}+2=\dfrac{2017}{2}\).
故答案为: \(\dfrac{2017}{2}\).答案 \(a_n=\left\{\begin{array}{l}
1, n=1 \\
4 n-5, n \geq 2
\end{array}\right.\)
解析 当\(n=1\)时,\(a_1=S_1=2-3+2=1\).
当\(n≥2\)时,\(a_n=S_n-S_{n-1}=2n^2-3n+2-[2(n-1)^2-3(n-1)+2]=4n-5\).
\(\therefore a_n=\left\{\begin{array}{l}
1, n=1 \\
4 n-5, n \geq 2
\end{array}\right.\).答案 \(6\)
解析 设抽出的一项是第\(x\)项,由题得, \(a_n= \begin{cases}S_1 & n=1 \\ S_n-S_{n-1}=7 n-2 & n \geqslant 2\end{cases}\),
且\(S_m=40(m-1)+a_x\),
\(\therefore \dfrac{m(7 m+3)}{2}=40(m-1)+7 x-2\),
\(\therefore m^2-11m+12-2x=0\),
\(\therefore x=6\)时,\(m=11,m=0\)(舍去),
\(\therefore\) 抽出的是第\(6\)项.
故答案为:\(6\).答案 \(a_1=1\), \(a_n=\left\{\begin{array}{l}
1, n=1 \\
2 n-2, n \geqslant 2
\end{array}\right.\).
解析 当\(n=2\)时,\(\because 2(a_1+a_2 )=2a_2+2\),\(\therefore a_1=1\),
\(\therefore\)当\(n⩾2\)时,有\(2S_{n-1}=(n-1)a_{n-1}+2\),
\(\therefore 2a_n=na_n-(n-1)a_{n-1}\),即\((n-2)a_n=(n-1)a_{n-1}\),
\(\therefore\) 当\(n⩾3\)时,有 \(\dfrac{a_n}{a_{n-1}}=\dfrac{n-1}{n-2}\),
\(\therefore \dfrac{a_3}{a_2}=\dfrac{2}{1}\), \(\dfrac{a_4}{a_3}=\dfrac{3}{2}\), \(\dfrac{a_5}{a_4}=\dfrac{4}{3}\), \(\ldots\), \(\dfrac{a_n}{a_{n-1}}=\dfrac{n-1}{n-2}\),
以上\(n-2\)个式相乘得,
\(\dfrac{a_n}{a_2}=n-1\),\(\therefore a_n=2n-2\),
当\(n=2\)时\(a_2=2\)符合上式,
\(\therefore a_n=\left\{\begin{array}{l}
1, n=1 \\
2 n-2, n \geqslant 2
\end{array}\right.\).答案 (1) \(a_n=4n-32\); (2)\(7\)或\(8\).
解析 (1)有题意可得 \(\left\{\begin{array}{l}
a+b+c=-28 \\
4 a+2 b+c=-52 \\
25 a+5 b+c=100
\end{array}\right.\)解得 \(\left\{\begin{array}{l}
a=2 \\
b=-30 \\
c=0
\end{array}\right.\),
\(\therefore S_n=2n^2-30n\),
因为当\(n⩾2\)时,\(a_n=S_n-S_{n-1}=4n-32\)
当\(n=1\)时,\(a_1=-28\),也适合上式.
\(\therefore a_n=4n-32\);
(2)因为 \(S_n=2 n^2-30 n=2\left(n-\dfrac{15}{2}\right)^2-\dfrac{225}{2}\)
因为\(n\)是正整数,所以当\(n=7\)或\(8\),\(S_n\)最小,最小值是\(-112\).答案 (1) \(a_n=\dfrac{2}{n+1}\); (2) \(a_n=\sqrt{n}-\sqrt{n-1}\).
解析 (1)\(a_1=1\), \(a_2=\dfrac{2 a_1}{2+a_1}=\dfrac{2}{3}\), \(a_3=\dfrac{2 a_2}{2+a_2}=\dfrac{1}{2}\), \(a_4=\dfrac{2 a_3}{2+a_3}=\dfrac{2}{5}\),
猜想 \(a_n=\dfrac{2}{n+1}\).
(2)\(n=1\)时, \(a_1=\dfrac{1}{2}\left(a_1+\dfrac{1}{a_1}\right)\),解得\(a_1=1\).
\(n=2\)时, \(1+a_2=\dfrac{1}{2}\left(a_2+\dfrac{1}{a_2}\right)\),解得 \(a_2=\sqrt{2}-1\).
\(n=3\)时, \(1+\sqrt{2}-1+a_3=\dfrac{1}{2}\left(a_3+\dfrac{1}{a_3}\right)\),解得 \(a_3=\sqrt{3}-\sqrt{2}\).
猜想 \(a_n=\sqrt{n}-\sqrt{n-1}\).
【B组---提高题】
1.设 \(0<\theta<\dfrac{\pi}{2}\),已知\(a_1=2 \cos \theta\), \(a_{n+1}=\sqrt{2+a_n}\left(n \in \boldsymbol{N}^*\right)\),猜想\(a_n=\)( )
A. \(2 \cos \dfrac{\theta}{2^n}\) \(\qquad \qquad \qquad\) B. \(2 \cos \dfrac{\theta}{2^{n-1}}\) \(\qquad \qquad \qquad\) C. \(2 \cos \dfrac{\theta}{2^{n+1}}\) \(\qquad \qquad \qquad\) D. \(2 \sin \dfrac{\theta}{2^n}\)
2.已知数列\(\{a_n\}\)中,\(a_1=t\), \(a_{n+1}=\dfrac{a_n}{2}+\dfrac{2}{a_n}\),若\(\{a_n\}\)为单调递减数列,则实数\(t\)的取值范围是\(\underline{\quad \quad}\) .
3.已知正项数列\(\{a_n\}\)满足\(a_1=1\),\(2a_n a_{n+1}+3a_{n+1}=8a_n-2\).试比较\(a_n\)与\(2\)的大小,并说明理由.
参考答案
答案 \(B\)
解析 当\(n=1\)时,\(A\)选项 \(2 \cos \dfrac{\theta}{2^n}=2 \cos \dfrac{\theta}{2}\),\(\therefore\)排除\(A\).
当\(n=2\)时,\(C\)选项 \(2 \cos \dfrac{\theta}{2^{n+1}}=2 \cos \dfrac{\theta}{4}\),\(\therefore\)排除\(C\).
\(a_2=\sqrt{2+a_1}=\sqrt{2+2 \cos \theta}=\sqrt{4 \cos ^2 \dfrac{\theta}{2}}=2 \cos \dfrac{\theta}{2}\),
此时\(D\)选项 \(2 \sin \dfrac{\theta}{2^n}=2 \sin \dfrac{\theta}{4}\),
\(\therefore\) 排除\(D\).
故选:\(B\).答案 \((2,+∞)\)
解析 \(\because a_{n+1}=\dfrac{a_n}{2}+\dfrac{2}{a_n}\),
\(\therefore a_{n+1}-a_n=\dfrac{2}{a_n}-\dfrac{a_n}{2}=\dfrac{\left(2-a_n\right)\left(2+a_n\right)}{2 a_n}<0\),
解得\(a_n>2\)或\(-2<a_n<0\),
(1)\(a_1=t∈(-2,0)\)时, \(a_2=\dfrac{a_1}{2}+\dfrac{2}{a_1}<-2\),
归纳可得:\(a_n<-2(n≥2)\).
\(\therefore a_2-a_1<0\),但是\(a_{n+1}-a_n>0(n≥2)\),不合题意,舍去.
(2)\(a_1=t>2\)时, \(a_2=\dfrac{a_1}{2}+\dfrac{2}{a_1}>2\),
归纳可得:\(a_n>2(n≥2)\).\(\therefore a_{n+1}-a_n<0\),符合题意.答案 \(a_n<2\)
解析 \(\because\)正项数列\(\{a_n\}\)满足\(a_1=1\),\(2a_n a_{n+1}+3a_{n+1}=8a_n-2\).
\(\therefore a_{n+1}=\dfrac{8 a_n-2}{2 a_n+3}\),
\(\therefore a_{n+1}-2=\dfrac{8 a_n-2}{2 a_n+3}-2=\dfrac{4 a_n-8}{2 a_n+3}=\dfrac{4\left(a_n-2\right)}{2 a_n+3}\),
\(\because\)正项数列\(\{a_n\}\)中,\(a_n>0\),\(\therefore 2a_n+3>0\),
\(\therefore a_{n+1}-2\)与\(a_n-2\)同号,\(\therefore a_n-2\)与\(a_1-2\)同号,
\(\because a_1-2=-1<0\),\(\therefore a_n-2<0\),
\(\therefore a_n<2\).
【C组---拓展题】
1.已知正项数列\(\{a_n\}\)满足\(a_1=1\), \(a_n=a_{n+1}+\dfrac{1}{\sqrt{n}} a_{n+1}^2\).则下列正确的是( )
A. \(\dfrac{1}{a_{n+1}}-\dfrac{1}{a_n}>\dfrac{1}{\sqrt{n}}\) \(\qquad \qquad \qquad \qquad \qquad\) B.数列\(\{a_{n+1}-a_n\}\)是递减数列
C.数列\(\{a_{n+1}+a_n\}\)是递增数列 \(\qquad \qquad \qquad \qquad\) D. \(a_{n+1}>\sqrt{n+1}-\sqrt{n}\)
2.已知数列\(\{a_n\}\)满足\(a_1=t\), \(a_{n+1}=1+\dfrac{1}{a_n}\),数列\(\{a_n\}\)可以是无穷数列,也可以是有穷数列,如取\(t=1\)时,可得无穷数列:\(1,2, \dfrac{3}{2}, \dfrac{5}{3}, \ldots\);取\(t=-\dfrac{1}{2}\)时,可得有穷数列:\(-\dfrac{1}{2}\),\(-1\),\(0\).
(1)若\(a_5=0\),求\(t\)的值;
(2)若\(1<a_n<2\)对任意\(n≥2\),\(n∈N^*\)恒成立,求实数\(t\)的取值范围;
(3)设数列\(\{b_n\}\)满足\(b_1=-1\), \(b_{n+1}=\dfrac{1}{b_n-1}\left(n \in \boldsymbol{N}^*\right)\),求证:\(t\)取数列\(\{b_n\}\)中的任何一个数,都可以得到一个有穷数列\(\{a_n\}\).
参考答案
答案 \(D\)
解析 因为\(a_1=1\), \(a_n=a_{n+1}+\dfrac{1}{\sqrt{n}} a_{n+1}^2\),
所以 \(a_{n+1}-a_n=-\dfrac{a_{n+1}{ }^2}{\sqrt{n}}<0\),即\(a_{n+1}<a_n\),
① \(a_n=a_{n+1}+\dfrac{1}{\sqrt{n}} a_{n+1}^2<a_{n+1}+\dfrac{a_{n+1} a_n}{\sqrt{n}}\),
所以 \(\dfrac{1}{a_{n+1}}<\dfrac{1}{a_n}+\dfrac{1}{\sqrt{n}}\),即 \(\dfrac{1}{a_{n+1}}-\dfrac{1}{a_n}<\dfrac{1}{\sqrt{n}}\),\(A\)错误;
②易得 \(a_{n+1}-a_n=-\dfrac{a_{n+1}{ }^2}{\sqrt{n}}\), \(a_{n+2}-a_{n+1}=-\dfrac{a_{n+2}^2}{\sqrt{n+1}}\),
故 \(\dfrac{a_{n+2}-a_{n+1}}{a_{n+1}-a_n}=\dfrac{\sqrt{n} a_{n+2}{ }^2}{\sqrt{n+1} a_{n+1}^2}=\sqrt{\dfrac{n}{n+1}} \cdot\left(\dfrac{a_{n+2}}{a_{n+1}}\right)^2<1\),
则\(a_{n+2}-a_{n+1}>a_{n+1}-a_n\),数列\(\{a_{n+1}-a_n\}\)是递增数列,\(B\)错误;
③ \(a_{n+1}+a_n=2 a_{n+1}+\dfrac{a_{n+1}^2}{\sqrt{n}}\), \(a_{n+1}+a_{n+2}=2 a_{n+2}+\dfrac{a_{n+2}^2}{\sqrt{n+1}}\),
所以\(\dfrac{a_{n+1}+a_{n+2}}{a_n+a_{n+1}}=\dfrac{a_{n+2}}{a_{n+1}} \cdot \dfrac{2+\dfrac{a_{n+2}}{\sqrt{n+1}}}{2+\dfrac{a_{n+1}}{\sqrt{n}}}\),
因为\(\dfrac{\dfrac{a_{n+2}}{\sqrt{n+1}}}{\dfrac{a_{n+1}}{\sqrt{n}}}=\dfrac{\sqrt{n}}{\sqrt{n+1}} \cdot \dfrac{a_{n+2}}{a_{n+1}}<1\),
所以\(\dfrac{a_{n+1}+a_{n+2}}{a_n+a_{n+1}}=\dfrac{a_{n+2}}{a_{n+1}} \cdot \dfrac{2+\dfrac{a_{n+2}}{\sqrt{n+1}}}{2+\dfrac{a_{n+1}}{\sqrt{n}}}<1\),\(C\)错误;
④当\(n≥2\)时, \(\dfrac{1}{a_{n+1}}-\dfrac{1}{a_n}<\dfrac{1}{\sqrt{n}}<\dfrac{2}{\sqrt{n+1}+\sqrt{n-1}}=\sqrt{n+1}-\sqrt{n-1}\),
\(\dfrac{1}{a_{n+1}}=\dfrac{1}{a_{n+1}}-\dfrac{1}{a_n}+\dfrac{1}{a_n}-\dfrac{1}{a_{n-1}}+\cdots+\dfrac{1}{a_2}-\dfrac{1}{a_1}+\dfrac{1}{a_1}<\sqrt{n+1}+\sqrt{n}\),
则 \(a_{n+1}>\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\),\(D\)正确.
故选:\(D\).答案 (1) \(-\dfrac{3}{5}\);(2) \(t>1\);(3)略.
解析 (1)数列\(\{a_n\}\)满足\(a_1=t\), \(a_{n+1}=1+\dfrac{1}{a_n}\),
所以 \(a_n=\dfrac{1}{a_{n+1}-1}\),
所以 \(a_4=\dfrac{1}{0-1}=-1\), \(a_3=\dfrac{1}{-1-1}=-\dfrac{1}{2}\), \(a_2=\dfrac{1}{-\dfrac{1}{2}-1}=-\dfrac{2}{3}\),
所以 \(t=\dfrac{1}{-\dfrac{2}{3}-1}=-\dfrac{3}{5}\).
(2)若\(1<a_n<2\)对任意\(n≥2\),\(n∈N^*\)恒成立,
所以 \(\dfrac{1}{2}<\dfrac{1}{a_n}<1\), \(\dfrac{3}{2}<a_{n+1}=1+\dfrac{1}{a_n}<2\),
即\(a_1=t\), \(a_2=\dfrac{t+1}{t}\),
所以 \(1<\dfrac{t+1}{t}<2\),解得\(t>1\).
证明:(3)由于 \(b_n=1+\dfrac{1}{b_{n+1}}\) ,
设\(a_1=1=b_k\),
则 \(a_2=1+\dfrac{1}{b_k}=b_{k-1}\), \(a_3=1+\dfrac{1}{b_{k-1}}=b_{k-2}\),\(…\),
\(a_k=b_1=-1\), \(a_{k+1}=1+\dfrac{1}{-1}=0\),
故数列\(\{a_n\}\)有\(k+1\)项,且为有穷数列.
4.1 数列的概念2 (递推公式、前n项和)的更多相关文章
- 数列的前$n$项和$S_n$的求法
相关公式 ①等差数列的\(S_n=\cfrac{n(a_1+a_n)}{2}=na_1+\cfrac{n(n-1)\cdot d}{2}\) ②等比数列的\(S_n=\left\{\begin{arr ...
- 递归函数练习:输出菲波拉契(Fibonacci)数列的前N项数据
/*====================================================================== 著名的菲波拉契(Fibonacci)数列,其第一项为0 ...
- e8_4输出菲波拉契数列的前10项
program fbnq;{输出菲波拉契数列的前10项} var a:..] of integer; i:integer; begin a[]:=; a[]:=; do a[i]:=a[i-]+a[i ...
- 黑马入学基础测试(三)求斐波那契数列第n项,n<30,斐波那契数列前10项为 1,1,2,3,5,8,13,21,34,55
.获得用户的输入 计算 3打印就行了. 这里用到了java.util.Scanner 具体API 我就觉得不常用.解决问题就ok了.注意的是:他们按照流体的方式读取.而不是刻意反复 ...
- 数列的前N项之和
时间限制: 1 Sec 内存限制: 128 MB 提交: 393 解决: 309 [提交][状态][讨论版] 题目描述 有一分数序列: 2/1 3/2 5/3 8/5 13/8 21/13.... ...
- Fibonacci数列前n项值的输出(运用递归算法)
1.斐波那契数列: 又称黄金分割数列,指的是这样一个数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 在数学上,斐波纳契数列以如下被以递归的方法 ...
- 打印Fibonacci数列方法汇总(前20项,每行5个)
NO.1 迭代法 标签:通俗.易懂 思路:先打印第一项.再在循环里面执行fib=fib1+fib2,把fib2赋给fib1,把fib赋给fib2,每行5个可使用if函数(循环次数对5取余). #inc ...
- 斐波那契数列第n项的值及前n项之和
<script>// 算法题 // 题1:斐波那契数列:1.1.2.3.5.8.13.21...// // 一.斐波那契数列第n项的值 // // 方法一//递归的写法function a ...
- python练习题-打印斐波拉契数列前n项
打印斐波拉契数列前n项 #encoding=utf-8 def fibs(num): result =[0,1] for i in range(num-2): result. ...
- 常系数线性递推的第n项及前n项和 (Fibonacci数列,矩阵)
(一)Fibonacci数列f[n]=f[n-1]+f[n-2],f[1]=f[2]=1的第n项的快速求法(不考虑高精度). 解法: 考虑1×2的矩阵[f[n-2],f[n-1]].根据fibon ...
随机推荐
- 测试开发jmeter设置线程序号
测试开发jmeter设置线程序号 ${__threadNum} 需要在请求的名称后面加上${__threadNum} 然后运行结果如下:
- BI 工具助力企业解锁数字化工厂,开启工业智能新视界
背景 在 2022 年公布的<"十四五"数字经济发展规划>中,政府不断增加对制造业数字化转型的政策支持力度,积极倡导制造企业采用最新技术,提升自动化.数字化和智能化水平 ...
- 对比python学julia(第四章:人工智能)--(第二节)人脸识别
2.1. 项目简介 人脸识别是基于人的脸部特征信息进行身份识别的一种图像识别技术.使用0PenCV 进行人脸识别的过程如下. (1) 针对每个识别对象收集大量的人脸图傣作为样本. (2) 将样本 ...
- 【H5】12 表单 其一 第一个表单
本系列的第一篇文章提供了您第一次创建HTML表单的经验, 包括设计一个简单表单,使用正确的HTML元素实现它, 通过CSS添加一些非常简单的样式,以及如何将数据发送到服务器. HTML表单是什么? H ...
- 【Ubuntu】下载安装 20.04.版本 桌面端
下载 Download 这次的是直接在界面上下载的,我都不知道为什么怎么点到之前的版本去了 12.04.5远古版本界面怪难看的... [下载地址:点我访问] https://cn.ubuntu.com ...
- 【Layui】09 动画 Anim
文档地址: https://www.layui.com/demo/anim.html 8种动画 <fieldset class="layui-elem-field layui-fiel ...
- 英语词汇:simplistic和simple区别
"Simplistic" 和 "simple" 都表示简单,但它们有不同的含义和语境: Simplistic: 含义: 过于简单化的,有贬义,表示忽略了复杂性或 ...
- 【转载】 梯度的直观理解_谈谈优化算法之一(动量法、Nesterov法、自然梯度法)
原文地址: https://blog.csdn.net/weixin_34613462/article/details/112333623 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA ...
- 【转载】 解决运行docker命令要用sudo的问题
将当前登录的用户添加到docker组中,这样以后在访问docker时就不用在sudo了 1. 查看是否创建docker 组 cat /etc/group | grep docker 2.创建docke ...
- NVRM: Xid (PCI:0000:b1:00): 13, pid=1375637, Graphics SM Global Exception on (GPC 0, TPC 1, SM 1): Multiple Warp Errors
显卡服务器中一个显卡崩溃了: May 16 05:38:58 dell kernel: [14244871.006970] NVRM: Xid (PCI:0000:b1:00): 13, pid=13 ...