关于decimal非常浅显的学习与整理


背景知识

整数,小数,浮点,定点
整数(Integer)是没有小数部分的数值,可以是正数、负数或零。在计算机中,整数通常以二进制形式存储。 小数(Decimal)是带有小数部分的数值。小数可以是有限的,也可以是无限循环的。在计算机中,小数通常以浮点数或定点数的形式存储。 浮点数(Floating-point)是一种用于表示带有小数部分的数值的方法。浮点数使用科学计数法表示,包括一个有效数字和一个指数。在计算机中,浮点数通常使用IEEE 754标准进行存储。 定点数(Fixed-point)是一种用于表示带有小数部分的数值的方法。定点数使用固定的小数点位置来表示数值。在计算机中,定点数通常以整数形式存储,并使用一个固定的缩放因子来确定小数点位置。

关于金额类型

decimal 其实在不同的编程语言, 不同的数据库里面的实现和使用都是不一样的
但是有一点是明确的:
浮点类型, 不管是float还是double 都是非精确数值类型
都会有各种除不尽的尾差问题. 但是decimal 这种数值类型, 是精确的数值. decimal是一种数据类型,用于存储精确的十进制数值。它通常用于需要精确计算和存储小数的场景,例如财务应用程序或需要保留小数位数的计算。
在大多数编程语言和数据库系统中,decimal类型可以指定精度和范围。精度表示数据的总位数,而范围表示小数的小数位数。例如,decimal(10, 2)表示精度为10,小数位数为2的decimal类型。

尾差的一个展示

参照网站: https://www.cnblogs.com/danielzzz/p/16824214.html

CREATE TABLE test_float(
`f1` FLOAT,
`f2` DOUBLE,
`f3` DEC(10,2)
); INSERT INTO test_float(f1,f2,f3) VALUES(0.47,0.47,0.47),(0.44,0.44,0.44),(0.19,0.19,0.19); SELECT SUM(f1),SUM(f2),SUM(f3) FROM test_float; 测试结果为:
SUM(f1) SUM(f2) SUM(f3)
1.0999999940395355 1.0999999999999999 1.10 发现只有decimal 才可以精确表示数值. float和double 其实都是有小数位数的.

关于decimal的数据库存储

自己查询了不少资料, 发现不同数据库, 比如MySQL和SQLServer 都不一样.
MySQL 貌似采用int 类型存储 9位精确数字.
也就是很多资料里面提到的 四个字节存储 9个数字.
但是SQLServer的存储模式就是 1个字节存储连个数字. MySQL应该会有一个单独的表示符号的布尔类型的设置
整数部分和小数部分是单独进行存储. SQLServer的存储模式暂时还不是很清楚. 初步怀疑 MySQL其实是采用 int类型 能够表示 42亿 也就是部分10位数的情况
退而求其次用来表示 9位精确数字. SQLServer的模式 其实就是 一个字节,可以表示 256个数字.
退而求其次表示 99 这个最大的两位数值. 所以每个字节表示两位数. 用来进行精确数字的存储. 但是MySQL与SQLserver 可能还比较相似. 但是与CK的存储模式可能还不一样. 需要说明大部分资料都确认, decimal的性能是数值类型里面最差的. 除非是金额汇率等必须精确的数字 整数可以用int. 逼不得已在用decimal 自己查了不少资料, 本来想dump 不分 raw data 但是发现没有达到自己的预期目标. 所以几天仅是简单的进行一些汇总. 还需要较多的时间研究底层的存储模式. 看到了 ibd2sdi 以及hexedit等工具. 但是都没有达到自己的预期. 因为是一个周天, 大部分时间用于陪伴自己的孩子了. 学习的时间不是很充足. 搜易今天仅是一个简单的学习与整理. 后续还需要继续探究和提高.

阿里上面一个说明-未看懂

# 其实原理看明白了. 但是不知道数据是怎么来的
# 感觉mysql的确做的比较简单.可能浪费了部分存储空间. 但是处理起来比较简单.
# 所有的性能其实都是在调和和折中. 自己哪方面强. 哪方面可能就要多出点力.
# 数据库与人生不一样, 强的必须得像低的低头. 人生是长板决定你的上限. 计算机是短板决定你的上限. Synopsis
Decimal2bin ()
From-value to convert
To-points to buffer Where string representation shoshould be stored
Precision/scale-see decimal_bin_size () below Note
The buffer is assumed to be of the size decimal_bin_size (precision, scale) Return Value
E_dec_ OK/e_dec_truncated/e_dec_overflow Description
For storage decimal numbers are converted to the "binary" format. This format has the following properties:
1. Length of the binary representation depends on the {precision, scale}
As provided by the caller and not on the intg/frac of the decimal
Convert.
2. Binary representations of the same {precision, scale} can be compared
With memcmp-with the same result as decimal_cmp () of the original
Decimals (not taking into account possible precision loss
Conversion ). This binary format is as follows:
1. First the number is converted to have a requested precision and scale.
2. Every full dig_per_dec1 digits of intg part are stored in 4 bytes
As is
3. The first intg % dig_per_dec1 digits are stored in the specified CED
Number of bytes (enough bytes to store this number of digits-
See dig2bytes)
4. Same for frac-full decimal_digit_t's are stored as is,
The last frac % dig_per_dec1 digits-in the specified ced number of bytes.
5. If the number is negative-every byte is inversed.
5. The very first bit of the resulting byte array is inverted (because
Memcmp compares unsigned bytes, see property 2 above) Example: 1234567890.1234 Internally is represented as 3 decimal_digit_t's 1 234567890 123400000 (Assuming we want a binary representation with precision = 14, scale = 4)
In hex it's 00-00-00-01 0d-fb-38-d2 07-5a-ef-40 Now, middle decimal_digit_t is full-It stores 9 decimal digits. It goes
Into binary representation as is: ...... 0d-fb-38-d2 ............ First decimal_digit_t has only one decimal digit. We can store one digit in
One byte, no need to waste four: 01 0d-fb-38-d2 ............ Now, last digit. It's 123400000. We can store 1234 in two bytes: 01 0d-fb-38-d2 04-d2 So, we 've packed 12 bytes number in 7 bytes.
And now we invert the highest bit to get the final result: 81 0d FB 38 D2 04 D2 And for-1234567890.1234 it wocould be 7E F2 04 37 2D FB 2D This article is an English version of an article which is originally in the Chinese language on aliyun.com and is provided for information purposes only. This website makes no representation or warranty of any kind, either expressed or implied, as to the accuracy, completeness ownership or

关于decimal非常浅显的学习与整理的更多相关文章

  1. Mysql学习笔记整理手册

    目录 (1) str_to_date (2) 递归查询 (3) 排序问题 (4) 条件函数 (5) 列转行函数 (6) find_int_set (7) 类型转换函数 (8) 合并更新 继上一篇博客& ...

  2. UWP学习目录整理

    UWP学习目录整理 0x00 可以忽略的废话 10月6号靠着半听半猜和文字直播的补充看完了微软的秋季新品发布会,信仰充值成功,对UWP的开发十分感兴趣,打算后面找时间学习一下.谁想到学习的欲望越来越强 ...

  3. iOS 开发学习资料整理(持续更新)

      “如果说我看得比别人远些,那是因为我站在巨人们的肩膀上.” ---牛顿   iOS及Mac开源项目和学习资料[超级全面] http://www.kancloud.cn/digest/ios-mac ...

  4. DBN 入门学习资料整理

    建议按序阅读 1.Deep Learning 概述 Deep Learning(深度学习)学习笔记整理系列 : http://blog.csdn.net/zouxy09/article/details ...

  5. python学习笔记整理——字典

    python学习笔记整理 数据结构--字典 无序的 {键:值} 对集合 用于查询的方法 len(d) Return the number of items in the dictionary d. 返 ...

  6. iOS 学习资料整理

    iOS学习资料整理 https://github.com/NunchakusHuang/trip-to-iOS 很好的个人博客 http://www.cnblogs.com/ygm900/ 开发笔记 ...

  7. Deep Learning(深度学习)学习笔记整理系列之(五)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  8. Git学习资料整理

    Git作为一个优秀的版本控制系统,是我们开发人员必须要学会使用的一个工具,接触git一年多以来,也看了不少相关资料,今天把我所看过的一些学习资源整理一下. Git入门当然首推廖雪峰廖老师的教程:Git ...

  9. Deep Learning(深度学习)学习笔记整理系列之(八)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  10. Deep Learning(深度学习)学习笔记整理系列之(七)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

随机推荐

  1. DNS解析中CNAME和MX记录冲突

    转载:DNS中CNAME和MX记录的冲突 在DNS解析中,CNAME记录与其他记录往往是互斥的.最常见的是CNAME记录和MX记录的互斥.例如我们在http://example.com部署官网,通过C ...

  2. android学习笔记(1)

    Android 开发框架 android系统是一个开放且体积庞大的系统,从功能上,将android开发分为移植开发移动电话系统,android应用开发和android系统开发三种. 移动移植移动电话系 ...

  3. mysql的CRUD操作实现

      插入语句(INSERT):一旦我们选择了要插入的字段,   我们就必须保证要插入的数值和选择的字段的个数,顺序,类型一致. 1:怎么插入一条数据: INSERT INTO 插入的表名称(列名1,列 ...

  4. 质效提升 | 聊聊QA与业务测试

    上面一篇文章<质效提升 | QA不做业务需求测试,你怎么看>主要讨论的是QA 和业务需求测试相关的问题,文章发出后收到了很多小伙伴的反馈,这里把很多有意义的反馈放在下面,希望对你有用. 约 ...

  5. 一段java代码是如何执行的?

    摘要:当你学会了java语言之后,你写了一些代码,然后你想要执行你的代码,来达成某些功能.那么,你都知道这段java代码都是如何执行的吗? 本文分享自华为云社区<一段java代码是如何执行的&g ...

  6. 📝 App备案与iOS云管理式证书 ,公钥及证书SHA-1指纹的获取方法

    ​ 引言 在iOS应用程序开发过程中,进行App备案并获取公钥及证书SHA-1指纹是至关重要的步骤.本文将介绍如何通过appuploader工具获取iOS云管理式证书 Distribution Man ...

  7. 使用Plist编辑器——简单入门指南

      本指南将介绍如何使用Plist编辑器.您将学习如何打开.编辑和保存plist文件,并了解plist文件的基本结构和用途.跟随这个简单的入门指南,您将掌握如何使用Plist编辑器轻松管理您的plis ...

  8. 抖音APP如何实现用户生命周期提升

    > 更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 近日,在火山引擎数智平台在北京举办的"超话数据:企业产品优化分享"的活动上,抖音策略 ...

  9. 火山引擎 DataLeap 套件下构建数据目录(Data Catalog)系统的实践

    更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 摘要 Data Catalog 产品,通过汇总技术和业务元数据,解决大数据生产者组织梳理数据.数据消费者找数和理解 ...

  10. C# 和 java 基本数据类型

    C# 和 java 基本数据类型 C#类型 java类型 描述 默认值 bool boolean 布尔值 False byte byte 8 位无符号整数 0 char char 16 位 Unico ...