揭秘 Task.Wait
简介
Task.Wait 是 Task 的一个实例方法,用于等待 Task 完成,如果 Task 未完成,会阻塞当前线程。
非必要情况下,不建议使用 Task.Wait,而应该使用 await。
本文将基于 .NET 6 的源码来分析 Task.Wait 的实现,其他版本的实现也是类似的。
var task = Task.Run(() =>
{
Thread.Sleep(1000);
return "Hello World";
});
var sw = Stopwatch.StartNew();
Console.WriteLine("Before Wait");
task.Wait();
Console.WriteLine("After Wait: {0}ms", sw.ElapsedMilliseconds);
Console.WriteLine("Result: {0}, Elapsed={1}ms", task.Result, sw.ElapsedMilliseconds);
输出:
Before Wait
After Wait: 1002ms
Result: Hello World, Elapsed=1002ms
可以看到,task.Wait 阻塞了当前线程,直到 task 完成。
其效果等效于:
task.Result (仅限于 Task<TResult>)
task.GetAwaiter().GetResult()
task.Wait 共有 5 个重载
public class Task<TResult> : Task
{
}
public class Task
{
// 1. 无参数,无返回值,阻塞当前线程至 task 完成
public void Wait()
{
Wait(Timeout.Infinite, default);
}
// 2. 无参数,有返回值,阻塞当前线程至 task 完成或 超时
// 如果超时后 task 仍未完成,返回 False,否则返回 True
public bool Wait(TimeSpan timeout)
{
return Wait((int)timeout.TotalMilliseconds, default);
}
// 3. 和 2 一样,只是参数类型不同
public bool Wait(int millisecondsTimeout)
{
return Wait(millisecondsTimeout, default);
}
// 4. 无参数,无返回值,阻塞当前线程至 task 完成或 cancellationToken 被取消
// cancellationToken 被取消时抛出 OperationCanceledException
public void Wait(CancellationToken cancellationToken)
{
Wait(Timeout.Infinite, cancellationToken);
}
// 5. 无参数,有返回值,阻塞当前线程至 task 完成或 超时 或 cancellationToken 被取消
// 如果超时后 task 仍未完成,返回 False,否则返回 True
// cancellationToken 被取消时抛出 OperationCanceledException
public bool Wait(int millisecondsTimeout, CancellationToken cancellationToken)
{
ThrowIfContinuationIsNotNull();
return InternalWaitCore(millisecondsTimeout, cancellationToken);
}
}
下面是一个使用 bool Wait(int millisecondsTimeout)
的例子:
var task = Task.Run(() =>
{
Thread.Sleep(1000);
return "Hello World";
});
var sw = Stopwatch.StartNew();
Console.WriteLine("Before Wait");
bool completed = task.Wait(millisecondsTimeout: 200);
Console.WriteLine("After Wait: completed={0}, Elapsed={1}", completed, sw.ElapsedMilliseconds);
Console.WriteLine("Result: {0}, Elapsed={1}", task.Result, sw.ElapsedMilliseconds);
输出:
Before Wait
After Wait: completed=False, Elapsed=230
Result: Hello World, Elapsed=1001
因为指定的 millisecondsTimeout 不足以等待 task 完成,所以 task.Wait 返回 False,继续执行后续代码。
但是,task.Result 仍然会阻塞当前线程,直到 task 完成。
关联的方法还有 Task.WaitAll 和 Task.WaitAny。同样也是非必要情况下,不建议使用。
背后的实现
task.Wait、task.Result、task.GetAwaiter().GetResult() 这三者背后的实现其实是一样的,都是调用了 Task.InternalWaitCore 这个实例方法。
借助 Rider 的类库 debug 功能,来给大家展示一下这三种方法的调用栈。
Task<string> RunTask()
{
return Task.Run(() =>
{
Thread.Sleep(1000);
return "Hello World!";
});
}
var task1 = RunTask();
task1.Wait();
var task2 = RunTask();
task2.GetAwaiter().GetResult();
var task3 = RunTask();
_ = task3.Result;
Task.InternalWaitCore 是 Task 的一个私有实例方法。
public class Task
{
internal bool InternalWait(int millisecondsTimeout, CancellationToken cancellationToken) =>
InternalWaitCore(millisecondsTimeout, cancellationToken);
private bool InternalWaitCore(int millisecondsTimeout, CancellationToken cancellationToken)
{
// 如果 Task 已经完成,直接返回 true
bool returnValue = IsCompleted;
if (returnValue)
{
return true;
}
// 如果调用的是 Task.Wait 的无参重载方法,且Task 已经完成或者在内联执行后完成,直接返回 true,不会阻塞 Task.Wait 的调用线程。
// WrappedTryRunInline 的意思是尝试在捕获的 TaskScheduler 中以内联的方式执行 Task,此处不展开
if (millisecondsTimeout == Timeout.Infinite && !cancellationToken.CanBeCanceled &&
WrappedTryRunInline() && IsCompleted)
{
returnValue = true;
}
else
{
// Task 未完成,调用 SpinThenBlockingWait 方法,阻塞当前线程,直到 Task 完成或超时或 cancellationToken 被取消
returnValue = SpinThenBlockingWait(millisecondsTimeout, cancellationToken);
}
return returnValue;
}
private bool SpinThenBlockingWait(int millisecondsTimeout, CancellationToken cancellationToken)
{
bool infiniteWait = millisecondsTimeout == Timeout.Infinite;
uint startTimeTicks = infiniteWait ? 0 : (uint)Environment.TickCount;
bool returnValue = SpinWait(millisecondsTimeout);
if (!returnValue)
{
var mres = new SetOnInvokeMres();
try
{
// 将 mres 作为 Task 的 Continuation,当 Task 完成时,会调用 mres.Set() 方法
AddCompletionAction(mres, addBeforeOthers: true);
if (infiniteWait)
{
bool notifyWhenUnblocked = ThreadPool.NotifyThreadBlocked();
try
{
// 没有指定超时时间,阻塞当前线程,直到 Task 完成或 cancellationToken 被取消
returnValue = mres.Wait(Timeout.Infinite, cancellationToken);
}
finally
{
if (notifyWhenUnblocked)
{
ThreadPool.NotifyThreadUnblocked();
}
}
}
else
{
uint elapsedTimeTicks = ((uint)Environment.TickCount) - startTimeTicks;
if (elapsedTimeTicks < millisecondsTimeout)
{
bool notifyWhenUnblocked = ThreadPool.NotifyThreadBlocked();
try
{
// 指定了超时时间,阻塞当前线程,直到 Task 完成或 超时 或 cancellationToken 被取消
returnValue = mres.Wait((int)(millisecondsTimeout - elapsedTimeTicks), cancellationToken);
}
finally
{
if (notifyWhenUnblocked)
{
ThreadPool.NotifyThreadUnblocked();
}
}
}
}
}
finally
{
// 如果因为超时或 cancellationToken 被取消,而导致 Task 未完成,需要将 mres 从 Task 的 Continuation 中移除
if (!IsCompleted) RemoveContinuation(mres);
}
}
return returnValue;
}
private bool SpinWait(int millisecondsTimeout)
{
if (IsCompleted) return true;
if (millisecondsTimeout == 0)
{
// 如果指定了超时时间为 0,直接返回 false
return false;
}
// 自旋至少一次,总次数由 Threading.SpinWait.SpinCountforSpinBeforeWait 决定
// 如果 Task 在自旋期间完成,返回 true
int spinCount = Threading.SpinWait.SpinCountforSpinBeforeWait;
SpinWait spinner = default;
while (spinner.Count < spinCount)
{
// -1 表示自旋期间不休眠,不会让出 CPU 时间片
spinner.SpinOnce(sleep1Threshold: -1);
if (IsCompleted)
{
return true;
}
}
// 自旋结束后,如果 Task 仍然未完成,返回 false
return false;
}
private sealed class SetOnInvokeMres : ManualResetEventSlim, ITaskCompletionAction
{
// 往父类 ManualResetEventSlim 中传入 false,表示 ManualResetEventSlim 的初始状态为 nonsignaled
// 也就是说,在调用 ManualResetEventSlim.Set() 方法之前,ManualResetEventSlim.Wait() 方法会阻塞当前线程
internal SetOnInvokeMres() : base(false, 0) { }
public void Invoke(Task completingTask) { Set(); }
public bool InvokeMayRunArbitraryCode => false;
}
}
Task.Wait 的两个阶段
SpinWait 阶段
用户态锁,不能维持很长时间的等待。线程在等待锁的释放时忙等待,不会进入休眠状态,从而避免了线程切换的开销。它在自旋等待期间会持续占用CPU时间片,如果自旋等待时间过长,会浪费CPU资源。
BlockingWait 阶段
内核态锁,在内核态实现的锁机制。当线程无法获得锁时,会进入内核态并进入休眠状态,将CPU资源让给其他线程。线程在内核态休眠期间不会占用CPU时间片,从而避免了持续的忙等待。当锁可用时,内核会唤醒休眠的线程并将其调度到CPU上执行。
BlockingWait 阶段 主要借助 SetOnInvokeMres 实现, SetOnInvokeMres 继承自 ManualResetEventSlim。
它会阻塞调用线程直到 Task 完成 或 超时 或 cancellationToken 被取消。
当前线程,Task 完成时,SetOnInvokeMres.Set() 方法会被当做 Task 的回调被调用从而解除阻塞。
Task.Wait 可能会导致的问题
到目前为止,我们已经了解到 Task.Wait 阻塞当前线程等待 Task 完成的原理,但是我们还是没有回答最开始的问题:为什么不建议使用 Task.Wait。
可能会导致线程池饥饿
线程池饥饿是指线程池中的可用线程数量不足,无法执行任务的现象。
在 ThreadPool 的设计中,如果已经创建的线程达到了一定数量,就算有新的任务需要执行,也不会立即创建新的线程(每 500ms 才会检查一次是否需要创建新的线程)。
更详细的介绍可以参考我的另一篇文章:https://www.cnblogs.com/eventhorizon/p/15316955.html#3-避免饥饿机制starvation-avoidance
如果我们在一个 ThreadPool 线程中调用 Task.Wait,而 Task.Wait 又阻塞了这个线程,无法执行其他任务,这样就会导致线程池中的可用线程数量不足,从而阻塞了任务的执行。
可能会导致死锁
除此之外 Task.Wait 也可能会导致死锁,这里就不展开了。具体可以参考:https://www.cnblogs.com/eventhorizon/p/15912383.html#同步上下文synchronizationcontext导致的死锁问题与-taskconfigureawaitcontinueoncapturedcontextfalse
.NET 6 对 Task.Wait 的优化
细心的同学会注意到 SpinThenBlockingWait 的 BlockingWait 阶段,会调用 ThreadPool.NotifyThreadBlocked() 方法,这个方法会通知线程池当前线程被阻塞了,新的线程会被立即创建出来。
但这也不代表 Task.Wait 就可以放心使用了,ThreadPool 中的线程被大量阻塞,就算借助 ThreadPool.NotifyThreadBlocked() 能让新任务继续执行,但这会导致线程频繁的创建和销毁,导致性能下降。
总结
Task.Wait 对调用线程的阻塞分为两个阶段:SpinWait 阶段 和 BlockingWait 阶段。如果 Task 完成较快,就可以在性能较好的 SpinWait 阶段完成等待。
滥用 Task.Wait 会导致线程池饥饿或死锁。
.NET 6 对 Task.Wait 进行了优化,如果 Task.Wait 阻塞了 ThreadPool 中的线程,会立即创建新的线程,避免了线程池中的可用线程数量不足的问题。但是这也会导致线程频繁的创建和销毁,导致性能下降。
揭秘 Task.Wait的更多相关文章
- .NET Task揭秘(一)
Task为.NET提供了基于任务的异步模式,它不是线程,它运行在线程池的线程上.本着开源的精神, 本文以解读基于.NET4.5 Task源码的方式来揭秘Task的实现原理. Task的创建 Tas ...
- .NET Task 揭秘(3)async 与 AsyncMethodBuilder
目录 前言 AsyncMethodBuilder 介绍 AsyncMethodBuilder 是状态机的重要组成部分 AsyncMethodBuilder 的结构 AsyncMethodBuilder ...
- 学习ASP.NET Web API框架揭秘之“HTTP方法重写”
最近在看老A的<ASP.NET Web API 框架揭秘>,这本书对于本人现阶段来说还是比较合适的(对于调用已经较为熟悉,用其开发过项目,但未深入理解过很多内容为何可以这样“调用”).看到 ...
- Spark Tungsten揭秘 Day3 内存分配和管理内幕
Spark Tungsten揭秘 Day3 内存分配和管理内幕 恭喜Spark2.0发布,今天会看一下2.0的源码. 今天会讲下Tungsten内存分配和管理的内幕.Tungsten想要工作,要有数据 ...
- Spark Streaming揭秘 Day30 集群模式下SparkStreaming日志分析
Spark Streaming揭秘 Day30 集群模式下SparkStreaming日志分析 今天通过集群运行模式观察.研究和透彻的刨析SparkStreaming的日志和web监控台. Day28 ...
- Spark Streaming揭秘 Day17 资源动态分配
Spark Streaming揭秘 Day17 资源动态分配 今天,让我们研究一下一个在Spark中非常重要的特性:资源动态分配. 为什么要动态分配?于Spark不断运行,对资源也有不小的消耗,在默认 ...
- Spark Streaming揭秘 Day4-事务一致性(Exactly one)
Spark Streaming揭秘 Day4 事务一致性Exactly one 引子 对于业务处理系统,事务的一致性非常的关键,事务一致性(Exactly one),简单来说,就是输入数据一定会被处理 ...
- ASP.NET Web API框架揭秘:路由系统的几个核心类型
ASP.NET Web API框架揭秘:路由系统的几个核心类型 虽然ASP.NET Web API框架采用与ASP.NET MVC框架类似的管道式设计,但是ASP.NET Web API管道的核心部分 ...
- 第四节:Task的启动的四种方式以及Task、TaskFactory的线程等待和线程延续的解决方案
一. 背景 揭秘: 在前面的章节介绍过,Task出现之前,微软的多线程处理方式有:Thread→ThreadPool→委托的异步调用,虽然也可以基本业务需要的多线程场景,但它们在多个线程的等待处理方面 ...
- 第五节:Task构造函数之TaskCreationOptions枚举处理父子线程之间的关系。
一. 整体说明 揭秘: 通过F12查看Task类的源码(详见下面的截图),发现Task类的构造函数有有一个参数为:TaskCreationOptions类型,本章节可以算作是一个扩展章节,主要就来研究 ...
随机推荐
- SpringBoot高频面试题
Springboot的优点 内置servlet容器,不需要在服务器部署 tomcat.只需要将项目打成 jar 包,使用 java -jar xxx.jar一键式启动项目 SpringBoot提供了s ...
- 二进制安装Kubernetes(k8s) v1.24.0 IPv4/IPv6双栈 (三主俩从)
二进制安装Kubernetes(k8s) v1.24.0 IPv4/IPv6双栈 (三主俩从) Kubernetes 开源不易,帮忙点个star,谢谢了 介绍 kubernetes二进制安装 后续尽可 ...
- [人生感悟]做人、做事的"人生十悟"【转载】
做人.做事.做官,是不少人需要经常面对和正确把握的大问题,处理好了,则健康成长,反之则裹足不前,甚至掉入人生的一个个"陷阱",这其中有规律可循,总结"十悟"可思 ...
- InnoDB引擎之flush脏页
利用 WAL 技术,数据库将随机写转换成了顺序写,大大提升了数据库的性能,由此也带来了内存脏页的问题. 脏页会被后台线程自动 flush,也会由于数据页淘汰而触发 flush,而刷脏页的过程由于会占用 ...
- 阿里云OSS服务 — 上传失败
问题重现 使用PicGo + 阿里云对象存储搭建图床,一直都能够正常使用,在没有修改任何配置的情况下,上传图片一直失败. 出现如下错误: StatusCodeError: 403 - "&l ...
- python:调用内置函数
问题描述:尝试下博客园如何上传GIF # hzh 每天进步一点点 # 2022/5/13 17:24 import colorama import time import os colorama.in ...
- Nvidia Tensor Core-WMMA API编程入门
1 WMMA (Warp-level Matrix Multiply Accumulate) API 对于计算能力在7.0及以上的CUDA设备,可以使用CUDA C++ API调用Tensor Cor ...
- Junit启动测试mybatis xml文件BindingException: Invalid bound statement问题
背景:1.正常启动,xml文件放在java目录和resource目录下均正常 2.junit启动,xml文件放在resource目录下正常,放在java目录下报BindingException错误 m ...
- Awesome GPT 来了!
大家好!我是韩老师. GPT, ChatGPT, OpenAI, LLM(大语言模型)等等技术的出现与应用,改变了许多的行业和人. 长期来看,类 GPT 的技术会对整个世界有着持续的改变. 我们几乎每 ...
- hasOwnProperty的作用、配合for in使用 、key in Object判读key
我们都知道,对象以 key|value的形式存在 它和数组一样可以遍历,对象可以通过for in 去遍历,拿到遍历对象的所有key 某些idea在使用for in 时,提示代码片段中就有出现以下这种情 ...