快速排序

快速排序(英语:Quicksort),又称划分交换排序(partition-exchange sort),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

步骤为:

  1. 从数列中挑出一个元素,称为"基准"(pivot),
  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

快速排序的分析

def quick_sort(alist, start, end):
"""快速排序""" # 递归的退出条件
if start >= end:
return # 设定起始元素为要寻找位置的基准元素
mid = alist[start] # low为序列左边的由左向右移动的游标
low = start # high为序列右边的由右向左移动的游标
high = end while low < high:
# 如果low与high未重合,high指向的元素不比基准元素小,则high向左移动
while low < high and alist[high] >= mid:
high -= 1
# 将high指向的元素放到low的位置上
alist[low] = alist[high] # 如果low与high未重合,low指向的元素比基准元素小,则low向右移动
while low < high and alist[low] < mid:
low += 1
# 将low指向的元素放到high的位置上
alist[high] = alist[low] # 退出循环后,low与high重合,此时所指位置为基准元素的正确位置
# 将基准元素放到该位置
alist[low] = mid # 对基准元素左边的子序列进行快速排序
quick_sort(alist, start, low-1) # 对基准元素右边的子序列进行快速排序
quick_sort(alist, low+1, end) alist = [54,26,93,17,77,31,44,55,20]
quick_sort(alist,0,len(alist)-1)
print(alist)

时间复杂度

  • 最优时间复杂度:O(n\(log_n\))
  • 最坏时间复杂度:O(\(n^2\))
  • 稳定性:不稳定

从一开始快速排序平均需要花费O(n log n)时间的描述并不明显。但是不难观察到的是分区运算,数组的元素都会在每次循环中走访过一次,使用O(n)的时间。在使用结合(concatenation)的版本中,这项运算也是O(n)。

在最好的情况,每次我们运行一次分区,我们会把一个数列分为两个几近相等的片段。这个意思就是每次递归调用处理一半大小的数列。因此,在到达大小为一的数列前,我们只要作log n次嵌套的调用。这个意思就是调用树的深度是O(log n)。但是在同一层次结构的两个程序调用中,不会处理到原来数列的相同部分;因此,程序调用的每一层次结构总共全部仅需要O(n)的时间(每个调用有某些共同的额外耗费,但是因为在每一层次结构仅仅只有O(n)个调用,这些被归纳在O(n)系数中)。结果是这个算法仅需使用O(n log n)时间。

快速排序演示

希尔排序

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

希尔排序过程

希尔排序的基本思想是:将数组列在一个表中并对列分别进行插入排序,重复这过程,不过每次用更长的列(步长更长了,列数更少了)来进行。最后整个表就只有一列了。将数组转换至表是为了更好地理解这算法,算法本身还是使用数组进行排序。

例如,假设有这样一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步长为5开始进行排序,我们可以通过将这列表放在有5列的表中来更好地描述算法,这样他们就应该看起来是这样(竖着的元素是步长组成):

13 14 94 33 82
25 59 94 65 23
45 27 73 25 39
10

然后我们对每列进行排序:

10 14 73 25 23
13 27 94 33 39
25 59 94 65 82
45

将上述四行数字,依序接在一起时我们得到:[ 10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45 ]。这时10已经移至正确位置了,然后再以3为步长进行排序:

10 14 73
25 23 13
27 94 33
39 25 59
94 65 82
45

排序之后变为:

10 14 13
25 23 33
27 25 59
39 65 73
45 94 82
94

最后以1步长进行排序(此时就是简单的插入排序了)

希尔排序的分析

def shell_sort(alist):
n = len(alist)
# 初始步长
gap = n / 2
while gap > 0:
# 按步长进行插入排序
for i in range(gap, n):
j = i
# 插入排序
while j>=gap and alist[j-gap] > alist[j]:
alist[j-gap], alist[j] = alist[j], alist[j-gap]
j -= gap
# 得到新的步长
gap = gap / 2 alist = [54,26,93,17,77,31,44,55,20]
shell_sort(alist)
print(alist)

时间复杂度

  • 最优时间复杂度:根据步长序列的不同而不同
  • 最坏时间复杂度:O(\(n^2\))
  • 稳定想:不稳定

希尔排序演示

归并排序

归并排序是采用分治法的一个非常典型的应用。归并排序的思想就是先递归分解数组,再合并数组。

将数组分解最小之后,然后合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。

归并排序的分析

def merge_sort(alist):
if len(alist) <= 1:
return alist
# 二分分解
num = len(alist)/2
left = merge_sort(alist[:num])
right = merge_sort(alist[num:])
# 合并
return merge(left,right) def merge(left, right):
'''合并操作,将两个有序数组left[]和right[]合并成一个大的有序数组'''
#left与right的下标指针
l, r = 0, 0
result = []
while l<len(left) and r<len(right):
if left[l] < right[r]:
result.append(left[l])
l += 1
else:
result.append(right[r])
r += 1
result += left[l:]
result += right[r:]
return result alist = [54,26,93,17,77,31,44,55,20]
sorted_alist = mergeSort(alist)
print(sorted_alist)

时间复杂度

  • 最优时间复杂度:O(n\(log_n\))
  • 最坏时间复杂度:O(n\(log_n\))
  • 稳定性:稳定

常见排序算法效率比较

Python实现希尔排序、快速排序、归并排序的更多相关文章

  1. Java冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序

    冒泡排序   冒泡排序是一种简单的排序算法.它重复地走访过要排序地数列,一次比较两个元素,如果它们地顺序错误就把它们交换过来.走访数列地工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成. ...

  2. 数组排序-冒泡排序-选择排序-插入排序-希尔排序-快速排序-Java实现

    这五种排序算法难度依次增加. 冒泡排序: 第一次将数组相邻两个元素依次比较,然后将大的元素往后移,像冒泡一样,最终最大的元素被移到数组的最末尾. 第二次将数组的前n-1个元素取出,然后相邻两个元素依次 ...

  3. python实现希尔排序(已编程实现)

    希尔排序: 观察一下”插入排序“:其实不难发现她有个缺点: 如果当数据是”5, 4, 3, 2, 1“的时候,此时我们将“无序块”中的记录插入到“有序块”时,估计俺们要崩盘, 每次插入都要移动位置,此 ...

  4. 希尔排序和归并排序(java实现)

    希尔排序 希尔排序算法实际上是一种特殊的插入排序,由DL.Shell于1959年提出而得名. 算法思想:希尔排序使数组中任意间隔为h的元素都是有序的,这些数组称为h有序数组,对于每个h,按插入排序进行 ...

  5. 几种排序方式的java实现(02:希尔排序,归并排序,堆排序)

    代码(部分为别人代码): 1.希尔排序(ShellSort) /* * 希尔排序:先取一个小于n的整数d1作为第一个增量, * 把文件的全部记录分成(n除以d1)个组.所有距离为d1的倍数的记录放在同 ...

  6. python实现希尔排序

    与插入排序的思想一致,插入排序是一个,希尔排序是多个插入排序! # @File: shell_sort import random def insert_sort_gap(li, d): for i ...

  7. Python实现八大排序(基数排序、归并排序、堆排序、简单选择排序、直接插入排序、希尔排序、快速排序、冒泡排序)

    目录 八大排序 基数排序 归并排序 堆排序 简单选择排序 直接插入排序 希尔排序 快速排序 冒泡排序 时间测试 八大排序 大概了解了一下八大排序,发现排序方法的难易程度相差很多,相应的,他们计算同一列 ...

  8. Python 一网打尽<排序算法>之从希尔排序算法的分治哲学开始

    1. 前言 本文将介绍希尔排序.归并排序.基数排序(桶排序).堆排序. 在所有的排序算法中,冒泡.插入.选择属于相类似的排序算法,这类算法的共同点:通过不停地比较,再使用交换逻辑重新确定数据的位置. ...

  9. C语言实现 冒泡排序 选择排序 希尔排序

    // 冒泡排序 // 选择排序 // 希尔排序 // 快速排序 // 递归排序 // 堆排序 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h& ...

  10. Python八大算法的实现,插入排序、希尔排序、冒泡排序、快速排序、直接选择排序、堆排序、归并排序、基数排序。

    Python八大算法的实现,插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 描述 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得 ...

随机推荐

  1. hdu 5234

    题意:求在不超过k的情况下,最多可以得到多少价值. 三维dp,结合01背包,第三维就是用来保存在不同的背包容量下能得到的最大价值,也就是第三维有很多状态. #include<iostream&g ...

  2. hdu 5547

    ***题意:4*4数独,要求在同一行同一列不能有相同的数字,另外在2*2的小单元里也不能有相同的数字 思路:DFS暴力搜索, 每个位置填1-4,递归回溯,判断是否符合条件,递归到最后一个位置+1则输出 ...

  3. mysql关于time时间戳相关使用

    1.当前时间: select now(); 应用: select * from game where time > now(); 2.时间的偏移: 向前偏移10天: select date_su ...

  4. Go-单链表-栈和队列

    package main import ( "errors" "fmt" "log" ) // 单链表 // 特征: // 1. 每个节点都 ...

  5. [转帖]JVM中年轻代里的对象什么情况下进入老年代?以及老年代垃圾回收算法-标记整理算法

    1.躲过15次GC之后进入老年代 系统刚启动时,创建的各种各样的对象,都是分配在年轻代里. 随着慢慢系统跑着跑着,年轻代满了,就会出发Minor GC ,可能1%的少量存活对像转移到空着的Surviv ...

  6. 【转帖】isolcpus功能与使用

    isolcpus功能存在已久,笔者追溯v2.6.11(2005年)那时内核就已经存在了isolcpus功能.根据kernel-parameters.txt 上的解释,"isolcpus功能用 ...

  7. [转帖]SQL Server JDBC – Set sendStringParametersAsUnicode to false

    https://vladmihalcea.com/sql-server-jdbc-sendstringparametersasunicode/ https://learn.microsoft.com/ ...

  8. Operating.System.Concepts.10th.Edition中文翻译

    <操作系统概念>是一本很好的书,主要介绍了操作系统的各个层面的概念,包含CPU调度,内存处理,文件系统等,目前已经出到第10版,是一本非常经典的书籍,从第1版至今被国内外众多高校选作教材, ...

  9. 一个Promise指定多个成功或者失败的回调详解

    // 当一个Promise指定多个成功或者失败的回调:都会调用吗? 会的 let p = new Promise((resolve, reject) => { resolve('第一种成功1') ...

  10. windows10卸载小娜

    适用于2004版本往后的 win+x如图 输入如下代码 Get-AppxPackage-allusersMicrosoft.549981C3F5F10|Remove-AppxPackage 运行结束后 ...