Main reference

[1] http://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples

1. How Streams Work

A stream represents a sequence of elements and supports different kind of operations to perform computations upon those elements:

List<String> myList =
Arrays.asList("a1", "a2", "b1", "c2", "c1"); myList
.stream()
.filter(s -> s.startsWith("c"))
.map(String::toUpperCase)
.sorted()
.forEach(System.out::println); // C1
// C2

2. Different Kinds of Streams

Streams can be created from various data sources, especially collections. Lists and Sets support new methods stream() and parallelStream() to either create a sequential or a parallel stream.

For Sequencial Stream

Arrays.asList("a1", "a2", "a3")
.stream()
.findFirst()
.ifPresent(System.out::println); // a1

Calling the method stream() on a list of objects returns a regular object stream. But we don't have to create collections in order to work with streams as we see in the next code sample:

Stream.of("a1", "a2", "a3")
.findFirst()
.ifPresent(System.out::println); // a1

Just use Stream.of() to create a stream from a bunch of object references.

Besides regular object streams Java 8 ships with special kinds of streams for working with the primitive data types intlong and double. As you might have guessed it's IntStream,LongStream and DoubleStream.

IntStreams can replace the regular for-loop utilizing IntStream.range()

IntStream.range(1, 4)
.forEach(System.out::println); // 1
// 2
// 3

All those primitive streams work just like regular object streams with the following differences: Primitive streams use specialized lambda expressions, e.g. IntFunction instead ofFunction or IntPredicate instead of Predicate. And primitive streams support the additional terminal aggregate operations sum() and average()

Arrays.stream(new int[] {1, 2, 3})
.map(n -> 2 * n + 1)
.average()
.ifPresent(System.out::println); // 5.0

Sometimes it's useful to transform a regular object stream to a primitive stream or vice versa. For that purpose object streams support the special mapping operations mapToInt(),mapToLong() and mapToDouble

Stream.of("a1", "a2", "a3")
.map(s -> s.substring(1))
.mapToInt(Integer::parseInt)
.max()
.ifPresent(System.out::println); // 3

Primitive streams can be transformed to object streams via mapToObj()

IntStream.range(1, 4)
.mapToObj(i -> "a" + i)
.forEach(System.out::println); // a1
// a2
// a3

Here's a combined example: the stream of doubles is first mapped to an int stream and than mapped to an object stream of strings:

Stream.of(1.0, 2.0, 3.0)
.mapToInt(Double::intValue)
.mapToObj(i -> "a" + i)
.forEach(System.out::println); // a1
// a2
// a3

3. Processing Order

An important characteristic of intermediate operations is laziness.

4. Reusing Streams

Java 8 streams cannot be reused. As soon as you call any terminal operation the stream is closed

Stream<String> stream =
Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> s.startsWith("a")); stream.anyMatch(s -> true); // ok
stream.noneMatch(s -> true); // exception

To overcome this limitation we have to to create a new stream chain for every terminal operation we want to execute, e.g. we could create a stream supplier to construct a new stream with all intermediate operations already set up:

Supplier<Stream<String>> streamSupplier =
() -> Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> s.startsWith("a")); streamSupplier.get().anyMatch(s -> true); // ok
streamSupplier.get().noneMatch(s -> true); // ok

Each call to get() constructs a new stream on which we are save to call the desired terminal operation.

5. Advanced Operations

Most code samples from this section use the following list of persons for demonstration purposes:

class Person {
String name;
int age; Person(String name, int age) {
this.name = name;
this.age = age;
} @Override
public String toString() {
return name;
}
} List<Person> persons =
Arrays.asList(
new Person("Max", 18),
new Person("Peter", 23),
new Person("Pamela", 23),
new Person("David", 12));

Collect

Collect is an extremely useful terminal operation to transform the elements of the stream into a different kind of result, e.g. a ListSet or Map. Collect accepts a Collector which consists of four different operations: a supplier, an accumulator, a combiner and a finisher. This sounds super complicated at first, but the good part is Java 8 supports various built-in collectors via the Collectors class. So for the most common operations you don't have to implement a collector yourself.

List<Person> filtered =
persons
.stream()
.filter(p -> p.name.startsWith("P"))
.collect(Collectors.toList()); System.out.println(filtered); // [Peter, Pamela]

Then

Map<Integer, List<Person>> personsByAge = persons
.stream()
.collect(Collectors.groupingBy(p -> p.age)); personsByAge
.forEach((age, p) -> System.out.format("age %s: %s\n", age, p)); // age 18: [Max]
// age 23: [Peter, Pamela]
// age 12: [David]

Collectors are extremely versatile. You can also create aggregations on the elements of the stream, e.g. determining the average age of all persons:

Double averageAge = persons
.stream()
.collect(Collectors.averagingInt(p -> p.age)); System.out.println(averageAge); // 19.0

In order to transform the stream elements into a map, we have to specify how both the keys and the values should be mapped. Keep in mind that the mapped keys must be unique, otherwise an IllegalStateException is thrown. You can optionally pass a merge function as an additional parameter to bypass the exception:

Map<Integer, String> map = persons
.stream()
.collect(Collectors.toMap(
p -> p.age,
p -> p.name,
(name1, name2) -> name1 + ";" + name2)); System.out.println(map);
// {18=Max, 23=Peter;Pamela, 12=David}

Now that we know some of the most powerful built-in collectors, let's try to build our own special collector. We want to transform all persons of the stream into a single string consisting of all names in upper letters separated by the | pipe character. In order to achieve this we create a new collector via Collector.of(). We have to pass the four ingredients of a collector: a supplier, an accumulator, a combiner and a finisher.

Collector<Person, StringJoiner, String> personNameCollector =
Collector.of(
() -> new StringJoiner(" | "), // supplier
(j, p) -> j.add(p.name.toUpperCase()), // accumulator
(j1, j2) -> j1.merge(j2), // combiner
StringJoiner::toString); // finisher String names = persons
.stream()
.collect(personNameCollector); System.out.println(names); // MAX | PETER | PAMELA | DAVID

Since strings in Java are immutable, we need a helper class like StringJoiner to let the collector construct our string. The supplier initially constructs such a StringJoiner with the appropriate delimiter. The accumulator is used to add each persons upper-cased name to the StringJoiner. The combiner knows how to merge two StringJoiners into one. In the last step the finisher constructs the desired String from the StringJoiner.

FlatMap

We've already learned how to transform the objects of a stream into another type of objects by utilizing the map operation. Map is kinda limited because every object can only be mapped to exactly one other object. But what if we want to transform one object into multiple others or none at all? This is where flatMap comes to the rescue.

FlatMap transforms each element of the stream into a stream of other objects. So each object will be transformed into zero, one or multiple other objects backed by streams. The contents of those streams will then be placed into the returned stream of the flatMap operation.

Before we see flatMap in action we need an appropriate type hierarchy:

class Foo {
String name;
List<Bar> bars = new ArrayList<>(); Foo(String name) {
this.name = name;
}
} class Bar {
String name; Bar(String name) {
this.name = name;
}
}

Next, we utilize our knowledge about streams to instantiate a couple of objects:

List<Foo> foos = new ArrayList<>();

// create foos
IntStream
.range(1, 4)
.forEach(i -> foos.add(new Foo("Foo" + i))); // create bars
foos.forEach(f ->
IntStream
.range(1, 4)
.forEach(i -> f.bars.add(new Bar("Bar" + i + " <- " + f.name))));

Now we have a list of three foos each consisting of three bars.

FlatMap accepts a function which has to return a stream of objects. So in order to resolve the bar objects of each foo, we just pass the appropriate function:

foos.stream()
.flatMap(f -> f.bars.stream())
.forEach(b -> System.out.println(b.name)); // Bar1 <- Foo1
// Bar2 <- Foo1
// Bar3 <- Foo1
// Bar1 <- Foo2
// Bar2 <- Foo2
// Bar3 <- Foo2
// Bar1 <- Foo3
// Bar2 <- Foo3
// Bar3 <- Foo3

Finally, the above code example can be simplified into a single pipeline of stream operations:

IntStream.range(1, 4)
.mapToObj(i -> new Foo("Foo" + i))
.peek(f -> IntStream.range(1, 4)
.mapToObj(i -> new Bar("Bar" + i + " <- " f.name))
.forEach(f.bars::add))
.flatMap(f -> f.bars.stream())
.forEach(b -> System.out.println(b.name));

FlatMap is also available for the Optional class introduced in Java 8. Optionals flatMapoperation returns an optional object of another type. So it can be utilized to prevent nastynull checks.

Think of a highly hierarchical structure like this:

class Outer {
Nested nested;
} class Nested {
Inner inner;
} class Inner {
String foo;
}

In order to resolve the inner string foo of an outer instance you have to add multiple null checks to prevent possible NullPointerExceptions:

Outer outer = new Outer();
if (outer != null && outer.nested != null && outer.nested.inner != null) {
System.out.println(outer.nested.inner.foo);
}

The same behavior can be obtained by utilizing optionals flatMap operation:

Optional.of(new Outer())
.flatMap(o -> Optional.ofNullable(o.nested))
.flatMap(n -> Optional.ofNullable(n.inner))
.flatMap(i -> Optional.ofNullable(i.foo))
.ifPresent(System.out::println);

Reduce

The reduction operation combines all elements of the stream into a single result. Java 8 supports three different kind of reduce methods. The first one reduces a stream of elements to exactly one element of the stream.

persons
.stream()
.reduce((p1, p2) -> p1.age > p2.age ? p1 : p2)
.ifPresent(System.out::println); // Pamela

The second reduce method accepts both an identity value and a BinaryOperatoraccumulator. This method can be utilized to construct a new Person with the aggregated names and ages from all other persons in the stream:

Person result =
persons
.stream()
.reduce(new Person("", 0), (p1, p2) -> {
p1.age += p2.age;
p1.name += p2.name;
return p1;
}); System.out.format("name=%s; age=%s", result.name, result.age);
// name=MaxPeterPamelaDavid; age=76

The third reduce method accepts three parameters: an identity value, a BiFunctionaccumulator and a combiner function of type BinaryOperator. Since the identity values type is not restricted to the Person type, we can utilize this reduction to determine the sum of ages from all persons:

Integer ageSum = persons
.stream()
.reduce(0, (sum, p) -> sum += p.age, (sum1, sum2) -> sum1 + sum2); System.out.println(ageSum); // 76

6. Parallel Streams

It can be stated that parallel streams can bring be a nice performance boost to streams with a large amount of input elements. But keep in mind that some parallel stream operations like reduce and collect need additional computations (combine operations) which isn't needed when executed sequentially.

Furthermore we've learned that all parallel stream operations share the same JVM-wide common ForkJoinPool. So you probably want to avoid implementing slow blocking stream operations since that could potentially slow down other parts of your application which rely heavily on parallel streams.

Java 8 Learn Notes - Streams的更多相关文章

  1. Java 8 Learn Notes

    Main reference: [1] http://winterbe.com/posts/2014/03/16/java-8-tutorial/ [2] https://plus.google.co ...

  2. Forget Java to learn Javascript from 0.--Day 1

    The first day,when I read 'we need practice so we need a Javascript Interpreter.','Every browser has ...

  3. Forget Java to learn Javascript from 0.--Preface

    I'm going to start to learn Javascript in this month. Someone told me you can't learn another langua ...

  4. Linux Academy Learn Notes

    Linux Essentials Certification Globbing ls ?.txt --- ? stands for one character while * means one or ...

  5. [Java coding] leetcode notes

    1, 如何不排序而找到最大,次大或者最小值? var int max1, max2, min1; iterate array once: update max1, max2, min1, for ex ...

  6. Java 8 中的 Streams API 详解

    为什么需要 Stream Stream 作为 Java 8 的一大亮点,它与 java.io 包里的 InputStream 和 OutputStream 是完全不同的概念.它也不同于 StAX 对 ...

  7. Bash Scripting Learn Notes

    References: [1] http://www.tldp.org/LDP/Bash-Beginners-Guide/html/ 1. Executing programs from a scri ...

  8. Java 8中的 Streams API 详解

    为什么需要 Stream Stream 作为 Java 8 的一大亮点,它与 java.io 包里的 InputStream 和 OutputStream 是完全不同的概念.它也不同于 StAX 对 ...

  9. (转)Java 8 中的 Streams API 详解

    为什么需要 Stream Stream 作为 Java 8 的一大亮点,它与 java.io 包里的 InputStream 和 OutputStream 是完全不同的概念.它也不同于 StAX 对 ...

随机推荐

  1. 性能测试分享:MYSQL死锁

    poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.如果对课程感兴趣,请大家咨询qq:908821478,咨询电话010-845052 ...

  2. AngularJS1.X学习笔记3-内置模板指令

    前面学习了数据绑定指令,现在开始学习内置模板指令.看起来有点多,目测比较好理解.OK!开始! 一.ng-repeat 1.基本用法 <!DOCTYPE html> <html lan ...

  3. 【Ubuntu】您没有查看“sf_VirtualDisk”的内容所需的权限。

    原文链接:http://www.crifan.com/can_not_access_share_folder_in_ubuntu_virtualbox/ [问题] 之前已经搞定可以自动共享文件夹了: ...

  4. (iOS)关于@property和@synthesize的理解(原创)

    开始学习ios的时候,就对一些objc的语法不理解,就比如@property和@synthesize,之前都是记住然后照着用,但是写的代码多了,对objc和ios有了一些理解,再加上最近用MRC,所以 ...

  5. JDBC基础学习(五)—批处理插入数据

    一.批处理介绍      当需要成批插入或者更新记录时.可以采用Java的批量更新机制,这一机制允许多条语句一次性提交给数据库批量处理.通常情况下比单独提交处理更有效率. JDBC的批量处理语句包括下 ...

  6. 彻底搞定C语言指针(精华版)

    1.语言中变量的实质 要理解C指针,我认为一定要理解C中“变量”的存储实质, 所以我就从“变量”这个东西开始讲起吧! 先来理解理解内存空间吧!请看下图: 内存地址→ 6 7 8 9 10 11 12 ...

  7. ServerSuperIO 3.5版本的体系结构,以及未来规划的几点思考

    一.特点 1.轻型高性能通信框架,适用于多种应用场,轮询模式.自控模式.并发模式和单例模式. 2.不仅是通讯框架,是设备驱动.IO通道.控制模式场景的协调机制. 3.支持协议驱动器,可以按规范写标准协 ...

  8. c++:自己动手实现线程安全的c++单例类

    前段时间使用c++做项目开发,需要根据根据配置文件路径加载全局配置文件,并对外提供唯一访问点.面对这样一个需求,自然的就想到了使用单例模式来创建一个单例配置对象,供外部调用.一开始想使用boost中自 ...

  9. 3 安装Zookeeper

    cnblogs-DOC 1.服务器环境 2.安装Redis3.安装Zookeeper4.安装MPush5.安装Alloc服务6.完整测试7.常见问题 从官网直接下载Zookeeper最新版本(Zook ...

  10. 利用Scrapy爬取所有知乎用户详细信息并存至MongoDB

    欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者 :崔庆才 本节分享一下爬取知乎用户所有用户信息的 Scrapy 爬虫实战. 本节目标 本节要实现的内容有 ...