这是之前我写的原始的 VB.NET 版本:
http://www.cnblogs.com/RChen/archive/2010/05/17/1737587.html
转化为 C# 版本后,还进行了一些重构。包括修改成了强类型,以及使用了 Parallel.ForEach,但是发现没有收到预期的效果。性能提升比较少。
研究后发现,其实问题的关键在于要通过某种方式对遍历的可能性进行剪枝,这样才能减少遍历次数,从而提升性能。而且,由于结果是通过 yield return 和 IEnumerable 实现的,并没有实现 IList 或者 Array. 所以它本质上并不支持按索引范围拆分的 Parallel.ForEach 工作方式,而实际估计是使用的几个 chunk 轮番读取的低效方式,这样在各个 chunk 之间就有线程同步的开销,如前文所说。这个性能优化只好留待后面有空再继续研究。
下面是目前的状况的实现代码:
using System.Collections.Generic; |
using System.Threading.Tasks; |
using System.Collections; |
namespace NonDeterministicEngineCS |
static void Main(string[] args) |
Benchmarking(new Action(Test1), "Test1() 执行完成,花费:{0}毫秒。"); |
Console.WriteLine("===================================================="); |
Benchmarking(new Action(Test2), "Test2() 执行完成,花费:{0}毫秒。"); |
Console.WriteLine("===================================================="); |
Benchmarking(new Action(Test3), "Test3() 执行完成,花费:{0}毫秒。"); |
public static void Test1() |
NonDeterministicEngine engine = new NonDeterministicEngine(); |
engine.AddParam("a"new int[] { 1, 2, 3, 4, 5, 6 }); |
engine.AddParam("b"new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }); |
engine.AddRequire((int a) => a > 2 && a < 9); |
engine.AddRequire((int b) => b > 5 && b <= 10); |
engine.AddRequire((int a, int b) => a == b - 1); |
result => Console.WriteLine("a = {0}, b = {1}", result["a"], result["b"])); |
public static void Test2() |
NonDeterministicEngine engine = new NonDeterministicEngine(); |
engine.AddParam("baker"new int[] { 1, 2, 3, 4, 5 }); |
engine.AddParam("cooper"new int[] { 1, 2, 3, 4, 5 }); |
engine.AddParam("fletcher"new int[] { 1, 2, 3, 4, 5 }); |
engine.AddParam("miller"new int[] { 1, 2, 3, 4, 5 }); |
engine.AddParam("smith"new int[] { 1, 2, 3, 4, 5 }); |
engine.AddRequire((int baker) => baker != 5); |
engine.AddRequire((int cooper) => cooper != 1); |
engine.AddRequire((int fletcher) => fletcher != 1 && fletcher != 5); |
engine.AddRequire((int miller, int cooper) => miller > cooper); |
engine.AddRequire((int smith, int fletcher) => |
&& smith != fletcher - 1); |
engine.AddRequire((int fletcher, int cooper) => fletcher != cooper + 1 |
&& fletcher != cooper - 1); |
engine.AddRequire((int baker, int cooper, int fletcher, int miller, int smith) => |
baker != cooper && baker != fletcher && baker != miller |
&& baker != smith && cooper != fletcher && cooper != miller |
&& cooper != smith && fletcher != miller && fletcher != smith && miller != smith); |
Console.WriteLine("baker: {0}, cooper: {1}, fletcher: {2}, miller: {3}, smith: {4}" |
public static void Test3() |
var engine = new NonDeterministicEngine(); |
engine.AddParam("a"new int[] { 1, 2, 3, 4, 5, 6, 7, 8 }); |
engine.AddParam("b"new int[] { 1, 2, 3, 4, 5, 6, 7, 8 }); |
engine.AddParam("c"new int[] { 1, 2, 3, 4, 5, 6, 7, 8 }); |
engine.AddParam("d"new int[] { 1, 2, 3, 4, 5, 6, 7, 8 }); |
engine.AddParam("e"new int[] { 1, 2, 3, 4, 5, 6, 7, 8 }); |
engine.AddParam("f"new int[] { 1, 2, 3, 4, 5, 6, 7, 8 }); |
engine.AddParam("g"new int[] { 1, 2, 3, 4, 5, 6, 7, 8 }); |
engine.AddParam("h"new int[] { 1, 2, 3, 4, 5, 6, 7, 8 }); |
engine.AddRequire((int a, int b, int c, int d, int e, int f, int g, int h) => |
a != b && a != c && a != d |
&& a != e && a != f && a != g && a != h |
&& b != c && b != d && b != e && b != f && b != g && b != h |
&& c != d && c != e && c != f && c != g && c != h |
&& d != e && d != f && d != g && d != h |
&& e != f && e != g && e != h |
&& NotInTheSameDiagonalLine(new int[] { a, b, c, d, e, f, g, h })); |
Console.WriteLine("(1,{0}), (2,{1}), (3,{2}), (4,{3}), (5,{4}), (6,{5}), (7,{6}), (8,{7})" |
static bool NotInTheSameDiagonalLine(int[] cols) |
for (int i = 0; i < cols.Length - 1; i++) |
for (int j = i + 1; j < cols.Length; j++) |
if (j - i == Math.Abs(cols[j] - cols[i])) |
public static void Benchmarking(Action f, string messageFormat) |
DateTime time1 = DateTime.Now; |
DateTime time2 = DateTime.Now; |
Console.WriteLine(messageFormat, (time2 - time1).TotalMilliseconds); |
using System.Collections.Generic; |
using System.Collections; |
namespace NonDeterministicEngineCS |
public IEnumerator Values |
using System.Collections.Generic; |
namespace NonDeterministicEngineCS |
public abstract class Condition |
public IList<string> ParamNames |
public abstract bool Call(params object[] args); |
public Condition(Delegate predicate) |
ParamNames = predicate.Method.GetParameters().Select(p => p.Name).ToArray(); |
public class Condition<T> : Condition |
public Condition(Func<T, bool> predicate) |
public override bool Call(params object[] args) |
return m_func((T)args[0]); |
public class Condition<T1, T2> : Condition |
public Condition(Func<T1, T2, bool> predicate) |
Func<T1, T2, bool> m_func; |
public override bool Call(params object[] args) |
return m_func((T1)args[0], (T2)args[1]); |
public class Condition<T1, T2, T3> : Condition |
public Condition(Func<T1, T2, T3, bool> predicate) |
Func<T1, T2, T3, bool> m_func; |
public override bool Call(params object[] args) |
return m_func((T1)args[0], (T2)args[1], (T3)args[2]); |
public class Condition<T1, T2, T3, T4> : Condition |
public Condition(Func<T1, T2, T3, T4, bool> predicate) |
Func<T1, T2, T3, T4, bool> m_func; |
public override bool Call(params object[] args) |
return m_func((T1)args[0], (T2)args[1], (T3)args[2], (T4) args[3]); |
public class Condition<T1, T2, T3, T4, T5> : Condition |
public Condition(Func<T1, T2, T3, T4, T5, bool> predicate) |
Func<T1, T2, T3, T4, T5, bool> m_func; |
public override bool Call(params object[] args) |
return m_func((T1)args[0], (T2)args[1], (T3)args[2], (T4)args[3], (T5)args[4]); |
public class Condition<T1, T2, T3, T4, T5, T6> : Condition |
public Condition(Func<T1, T2, T3, T4, T5, T6, bool> predicate) |
Func<T1, T2, T3, T4, T5, T6, bool> m_func; |
public override bool Call(params object[] args) |
return m_func((T1)args[0], (T2)args[1], (T3)args[2], (T4)args[3], (T5)args[4], (T6)args[5]); |
public class Condition<T1, T2, T3, T4, T5, T6, T7> : Condition |
public Condition(Func<T1, T2, T3, T4, T5, T6, T7, bool> predicate) |
Func<T1, T2, T3, T4, T5, T6, T7, bool> m_func; |
public override bool Call(params object[] args) |
return m_func((T1)args[0], (T2)args[1], (T3)args[2], (T4)args[3], (T5)args[4], (T6)args[5], (T7)args[6]); |
public class Condition<T1, T2, T3, T4, T5, T6, T7, T8> : Condition |
public Condition(Func<T1, T2, T3, T4, T5, T6, T7, T8, bool> predicate) |
Func<T1, T2, T3, T4, T5, T6, T7, T8, bool> m_func; |
public override bool Call(params object[] args) |
return m_func((T1)args[0], (T2)args[1], (T3)args[2], (T4)args[3], (T5)args[4], (T6)args[5], (T7)args[6], (T8)args[7]); |
using System.Collections.Generic; |
using System.Collections; |
using System.Threading.Tasks; |
using System.Linq.Expressions; |
namespace NonDeterministicEngineCS |
public class NonDeterministicEngine |
private List<Param> m_paramDict = new List<Param>(); |
private List<Condition> m_predicateDict = new List<Condition>(); |
public void AddParam(string name, IEnumerable values) |
m_paramDict.Add(new Param { Name = name, Values = values.GetEnumerator() }); |
public void AddRequire<T>(Func<T, bool> predicate) |
m_predicateDict.Add(new Condition<T>(predicate)); |
public void AddRequire<T1, T2>(Func<T1, T2, bool> predicate) |
m_predicateDict.Add(new Condition<T1, T2>(predicate)); |
public void AddRequire<T1, T2, T3>(Func<T1, T2, T3, bool> predicate) |
m_predicateDict.Add(new Condition<T1, T2, T3>(predicate)); |
public void AddRequire<T1, T2, T3, T4>(Func<T1, T2, T3, T4, bool> predicate) |
m_predicateDict.Add(new Condition<T1, T2, T3, T4>(predicate)); |
public void AddRequire<T1, T2, T3, T4, T5>(Func<T1, T2, T3, T4, T5, bool> predicate) |
m_predicateDict.Add(new Condition<T1, T2, T3, T4, T5>(predicate)); |
public void AddRequire<T1, T2, T3, T4, T5, T6>(Func<T1, T2, T3, T4, T5, T6, bool> predicate) |
m_predicateDict.Add(new Condition<T1, T2, T3, T4, T5, T6>(predicate)); |
public void AddRequire<T1, T2, T3, T4, T5, T6, T7>(Func<T1, T2, T3, T4, T5, T6, T7, bool> predicate) |
m_predicateDict.Add(new Condition<T1, T2, T3, T4, T5, T6, T7>(predicate)); |
public void AddRequire<T1, T2, T3, T4, T5, T6, T7, T8>(Func<T1, T2, T3, T4, T5, T6, T7, T8, bool> predicate) |
m_predicateDict.Add(new Condition<T1, T2, T3, T4, T5, T6, T7, T8>(predicate)); |
public IEnumerable<Dictionary<stringobject>> GetResults() |
var em = new CombinationEnumerable(this); |
public void EachResult(Action<Dictionary<stringobject>> action) |
var em = new CombinationEnumerable(this); |
bool Satisfy(Dictionary<stringobject> result) |
foreach (Condition item in m_predicateDict) |
var args = item.ParamNames.Select( |
private class CombinationEnumerable : IEnumerable<Dictionary<stringobject>> |
NonDeterministicEngine m_engine; |
public CombinationEnumerable(NonDeterministicEngine engine) |
public IEnumerator<Dictionary<stringobject>> GetEnumerator() |
return new CombinationEnumerator(m_engine); |
IEnumerator IEnumerable.GetEnumerator() |
return new CombinationEnumerator(m_engine); |
/// 组合多个 iterator 为一个复合的 iterator. |
/// MoveNext 实现为:移动到下一个所有变量值可能的组合。 |
private class CombinationEnumerator : IEnumerator<Dictionary<stringobject>> |
private bool m_firstTime = true |
private NonDeterministicEngine m_target; |
public CombinationEnumerator(NonDeterministicEngine engine) |
public Dictionary<stringobject> GetCurrent() |
return m_target.m_paramDict.ToDictionary |
(param => param.Name, param => param.Values.Current); |
// 首次执行时,需要将所有变量的 enumerator 都前进到起始位置 |
foreach (Param item in m_target.m_paramDict) |
// 首先尝试最后一个变量的 iterator,看能否 MoveNext() (是否还有没有尝试过的值)。 |
int iterIndex = m_target.m_paramDict.Count - 1; |
bool canMoveNext = m_target.m_paramDict[iterIndex].Values.MoveNext(); |
// 否则依次回溯到前一个变量,看该变量的 iterator 能否 MoveNext() |
// 表明已尝试了所有变量的所有可能值,退无可退,则终止枚举过程。 |
canMoveNext = m_target.m_paramDict[iterIndex].Values.MoveNext(); |
// 则需要将这个位置之后的所有其他变量的 iterator 复位,并前进到第一种可能性。 |
for (int i = iterIndex + 1; i < m_target.m_paramDict.Count; i++) |
var iter = m_target.m_paramDict[i].Values; |
foreach (var param in m_target.m_paramDict) |
public Dictionary<stringobject> Current |
public bool IterationOver |
object IEnumerator.Current |
- Spark源码剖析 - 计算引擎
本章导读 RDD作为Spark对各种数据计算模型的统一抽象,被用于迭代计算过程以及任务输出结果的缓存读写.在所有MapReduce框架中,shuffle是连接map任务和reduce任务的桥梁.map ...
- 【Spark深入学习 -13】Spark计算引擎剖析
----本节内容------- 1.遗留问题解答 2.Spark核心概念 2.1 RDD及RDD操作 2.2 Transformation和Action 2.3 Spark程序架构 2.4 Spark ...
- 基于Kafka的实时计算引擎如何选择?Flink or Spark?
1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引 ...
- 基于Kafka的实时计算引擎如何选择?(转载)
1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引 ...
- 交互式计算引擎REOLAP篇
交互式计算引擎ROLAP篇 摘自:<大数据技术体系详解:原理.架构与实践> 一.Impala Impala最初由Cloudera公司开发的,其最初设计动机是充分结合传统数据库与大数据系 ...
- 腾讯大数据之TDW计算引擎解析——Shuffle
转自 https://www.csdn.net/article/2014-05-19/2819831-TDW-Shuffle/1 摘要:腾讯分布式数据仓库基于开源软件Hadoop和Hive进行构建,T ...
- Flink学习笔记-新一代Flink计算引擎
说明:本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKh ...
- Fel表达式计算引擎学习
转载原文地址:Fel是轻量级的高效的表达式计算引擎 Fel的问题 Fel的问题 Fel是轻量级的高效的表达式计算引擎 Fel在源自于企业项目,设计目标是为了满足不断变化的功能需求和性能需求. Fel是 ...
- 《大数据实时计算引擎 Flink 实战与性能优化》新专栏
基于 Flink 1.9 讲解的专栏,涉及入门.概念.原理.实战.性能调优.系统案例的讲解. 专栏介绍 扫码下面专栏二维码可以订阅该专栏 首发地址:http://www.54tianzhisheng. ...
随机推荐
- C#仪器数据文件解析-XPS文件
XPS为微软推出的类似于Adobe PDF的一种文件格式,个人认为XPS很好,但毕竟PDF已经被大家所熟知,因此XPS的使用很少,也少有仪器数据输出为该格式. XPS百度百科:https://baik ...
- wpf值转换器IValueConverter例子
转载:http://blog.163.com/wangzhenguo2005@126/blog/static/37140526201085113430862/ 值转换器可以把一种类型转换成另一种类型. ...
- 在Visual Studio 2013 中使用C++单元测试
本文主要介绍在Visual Studio 2013中对代码进行单元测试的方法,包含了两方面的内容:对已有的Dll文件进行单元测试,以及对已有的源文件进行单元测试. 1. VS2013对DLL文件的单元 ...
- 如何开发webpack plugin
继上回介绍了如何开发webpack loader 之后.趁热打铁,来继续看下webpack另一个核心组成:plugin. 下面也和loader一样,让我们一起从基本的官方文档着手看起. loader和 ...
- WebApi系列~HttpClient的性能隐患
回到目录 最近在进行开发过程中,基于都是接口开发,A站接口访问B接口接口来请求数据,而在这个过程中我们使用的是HttpClient这个框架,当然也是微软自己的框架,性能当前没有问题,但如果你直接使用官 ...
- 【机器学习实战】第7章 集成方法 ensemble method
第7章 集成方法 ensemble method 集成方法: ensemble method(元算法: meta algorithm) 概述 概念:是对其他算法进行组合的一种形式. 通俗来说: 当做重 ...
- python识别html主要文本框
在抓取网页的时候只想抓取主要的文本框,例如 csdn 中的主要文本框为下图红色框: 抓取的思想是,利用bs4查找所有的div,用正则筛选出每个div里面的中文,找到中文字数最多的div就是属于正文的d ...
- 关于NOIP2014“无线网络发射器选址”一题的衍生题目的思考及思维方向
无线网络发射器选址 题目描述 随着智能手机的日益普及,人们对无线网的需求日益增大.某城市决定对城市内的公共场所覆盖无线网. 假设该城市的布局为由严格平行的129 条东西向街道和129 条南北向街道所形 ...
- APUE 4 - 线程<2> : 线程同步
当控件的多个线程共享统一内存时,我们需要确定各个线程访问到的数据的一致性.在cpu结构中,修改操作由多个内存读写周期(memory cycle),而在这些内存周期之间, 有可能会发生其他线程的内存读操 ...
- JPA + SpringData 操作数据库 ---- 深入了解 SpringData
原创播客,如需转载请注明出处.原文地址:http://www.cnblogs.com/crawl/p/7735616.html ------------------------------------ ...