Dijkstra算法(Swift版)
原理
我们知道,使用Breadth-first search算法能够找到到达某个目标的最短路径,但这个算法没考虑weight
,因此我们再为每个edge添加了权重后,我们就需要使用Dijkstra算法来寻找权重和最小的路径。
其实原理很简单,我们最终的目的是计算出每一个节点到起点的权重之和,同时获取得到这个权重和的路径数组。
那么权重和最小的那个自然就是我们要的结果。
在该算法中有一下几个核心的思想:
- 当我们遍历到某个节点时,计算出该节点到起点的权重和之后=,该节点就不在使用了,或删除或者标记为已检阅
- 当该节点的某个neighbor节点加上权重的值小于该neighbor节点时,跟新该neighbor节点的数据
实现这个算法的方式有多种,在该文章中,我们把某些数据直接封装到了节点中。
Vertex
Vertex.swift
import Foundation
open class Vertex {
open var identifier: String
open var neighbors: [(Vertex, Double)] = []
open var pathLengthFromStart = Double.infinity
open var pathVerticesFromStart: [Vertex] = []
public init(identifier: String) {
self.identifier = identifier
}
open func clearCache() {
pathLengthFromStart = Double.infinity
pathVerticesFromStart = []
}
}
extension Vertex: Hashable {
open var hashValue: Int {
return identifier.hashValue
}
}
extension Vertex: Equatable {
public static func ==(lhs: Vertex, rhs: Vertex) -> Bool {
return lhs.hashValue == rhs.hashValue
}
}
Dijkstra
Dijkstra.swift
import Foundation
public class Dijkstra {
private var totalVertices: Set<Vertex>
public init(vertices: Set<Vertex>) {
totalVertices = vertices
}
private func clearCache() {
totalVertices.forEach { $0.clearCache() }
}
public func findShortestPaths(from startVertex: Vertex) {
clearCache()
var currentVertices = self.totalVertices
startVertex.pathLengthFromStart = 0
startVertex.pathVerticesFromStart.append(startVertex)
var currentVertex: Vertex? = startVertex
while let vertex = currentVertex {
currentVertices.remove(vertex)
let filteredNeighbors = vertex.neighbors.filter { currentVertices.contains($0.0) }
for neighbor in filteredNeighbors {
let neighborVertex = neighbor.0
let weight = neighbor.1
let theoreticNewWeight = vertex.pathLengthFromStart + weight
if theoreticNewWeight < neighborVertex.pathLengthFromStart {
neighborVertex.pathLengthFromStart = theoreticNewWeight
neighborVertex.pathVerticesFromStart = vertex.pathVerticesFromStart
neighborVertex.pathVerticesFromStart.append(neighborVertex)
}
}
if currentVertices.isEmpty {
currentVertex = nil
break
}
currentVertex = currentVertices.min { $0.pathLengthFromStart < $1.pathLengthFromStart }
}
}
}
演示
我们就演示这个例子
//: Playground - noun: a place where people can play
import Foundation
// last checked with Xcode 9.0b4
#if swift(>=4.0)
print("Hello, Swift 4!")
#endif
var vertices: Set<Vertex> = Set()
/// Create vertexs
var vertexA = Vertex(identifier: "A")
var vertexB = Vertex(identifier: "B")
var vertexC = Vertex(identifier: "C")
var vertexD = Vertex(identifier: "D")
var vertexE = Vertex(identifier: "E")
var vertexF = Vertex(identifier: "F")
/// Setting neighbors
vertexA.neighbors.append(contentsOf: [(vertexB, 5), (vertexD, 2)])
vertexB.neighbors.append(contentsOf: [(vertexC, 4), (vertexE, 2)])
vertexC.neighbors.append(contentsOf: [(vertexE, 6), (vertexF, 3)])
vertexD.neighbors.append(contentsOf: [(vertexB, 8), (vertexE, 7)])
vertexE.neighbors.append(contentsOf: [(vertexF, 1)])
vertices.insert(vertexA)
vertices.insert(vertexB)
vertices.insert(vertexC)
vertices.insert(vertexD)
vertices.insert(vertexE)
vertices.insert(vertexF)
let dijkstra = Dijkstra(vertices: vertices)
dijkstra.findShortestPaths(from: vertexA)
for vertex in vertices {
let paths = vertex.pathVerticesFromStart.map({ $0.identifier })
print("(A=>" + vertex.identifier + "): " + paths.joined(separator: " -> "))
}
打印结果:
(A=>B): A -> B
(A=>A): A
(A=>F): A -> B -> E -> F
(A=>C): A -> B -> C
(A=>D): A -> D
(A=>E): A -> B -> E
主要代码来自于Dijkstra
Dijkstra算法(Swift版)的更多相关文章
- 朴素版和堆优化版dijkstra和朴素版prim算法比较
1.dijkstra 时间复杂度:O(n^2) n次迭代,每次找到距离集合S最短的点 每次迭代要用找到的点t来更新其他点到S的最短距离. #include<iostream> #inclu ...
- Java用Dijkstra算法实现地图两点的最短路径查询(Android版)
地图上实现最短路径的查询,据我了解的,一般用Dijkstra算法和A*算法来实现.由于这是一个课程项目,时间比较急,而且自己不熟悉A*算法,所以参考网上的Dijkstra算法(http://blog. ...
- 快速排序OC、Swift版源码
前言: 你要问我学学算法在工作当中有什么用,说实话,当达不到那个地步的时候,可能我们不能直接的感觉到它的用处!你就抱着这样一个心态,当一些APP中涉及到算法的时候我不想给其他人画界面!公司的项目也是暂 ...
- 单源最短路径问题之dijkstra算法
欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 1. 算法的原理 以源点开始,以源点相连的顶点作为向外延伸的顶点,在所有这些向外延伸的顶 ...
- 经典算法研究系列:二、Dijkstra 算法初探
July 二零一一年一月 本文主要参考:算法导论 第二版.维基百科. 一.Dijkstra 算法的介绍 Dijkstra 算法,又叫迪科斯彻算法(Dijkstra),算法解决的是有向图中单个源点到 ...
- 配对堆优化Dijkstra算法小记
关于配对堆的一些小姿势: 1.配对堆是一颗多叉树. 2.包含优先队列的所有功能,可用于优化Dijkstra算法. 3.属于可并堆,因此对于集合合并维护最值的问题很实用. 4.速度快于一般的堆结构(左偏 ...
- 最短路径-Dijkstra算法与Floyd算法
一.最短路径 ①在非网图中,最短路径是指两顶点之间经历的边数最少的路径. AE:1 ADE:2 ADCE:3 ABCE:3 ②在网图中,最短路径是指两顶点之间经历的边上权值之和最短的路径 ...
- 非负权值有向图上的单源最短路径算法之Dijkstra算法
问题的提法是:给定一个没有负权值的有向图和其中一个点src作为源点(source),求从点src到其余个点的最短路径及路径长度.求解该问题的算法一般为Dijkstra算法. 假设图顶点个数为n,则针对 ...
- luogu P3371 & P4779 单源最短路径spfa & 最大堆优化Dijkstra算法
P3371 [模板]单源最短路径(弱化版) 题目背景 本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779. 题目描述 如题,给出一个有向图,请输出从某一点出 ...
随机推荐
- Java历程-初学篇 Day09 冒泡排序
冒泡排序 冒泡排序(Bubble Sort)是一种简单的排序算法.它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没有再需要交换,也就是 ...
- 运行Vue在ASP.NET Core应用程序并部署在IIS上
前言 项目一直用的ASP.NET Core,但是呢我对ASP.NET Core一些原理也还未开始研究,仅限于会用,不过园子中已有大量文章存在,借着有点空余时间,我们来讲讲如何利用ASP.NET Cor ...
- C#综合揭秘——细说多线程(二)
/* 异步写入 FileStream中包含BeginWrite.EndWrite 方法可以启动I/O线程进行异步写入. public override IAsyncResult BeginWrite ...
- JavaScript实现模糊推荐的input框(类似百度搜索框)
如何用JS实现一个类似百度搜索框的输入框呢,再填充完失去焦点时,自动填充配置项,最终效果如下图: 实现很简单,但是易用性会上升一大截,需要用到的有jquery-ui的autocomplete,jque ...
- 读Zepto源码之Stack模块
Stack 模块为 Zepto 添加了 addSelf 和 end 方法. 读 Zepto 源码系列文章已经放到了github上,欢迎star: reading-zepto 源码版本 本文阅读的源码为 ...
- 使用邮件监控Mxnet训练
1. 前言 受到小伙伴的启发,就自己动手写了一个使用邮件监控Mxnet训练的例子.整体不算复杂. 2. 打包训练代码 需要进行监控训练,所以需要将训练的代码打包进一个函数内,通过传参的方式进行训练.还 ...
- DevOps之服务器
唠叨话 关于德语噢屁事的知识点,仅提供专业性的精华汇总,具体知识点细节,参考教程网址,如需帮助,请留言. <服务器(Server)> DevOps之服务器划分为三部分:系统.虚拟化.器件. ...
- 创建一个ROS工作空间(ROS Workspace)
详细参照 http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment1.mkdir -p ~/catkin_ws/ ...
- [转]pycharm快捷键
开始学习python用的ide是pycharm,之前做java一种用eclipse,刚开始使用pycharm快捷键与eclipse有很大不同,慢慢适应中. 下面列举了下pycharm的快捷键,内容转自 ...
- MYSQL 总结
1.数据库实质中访问的是 DBMC,数据库是一种存储介质 2.groub by 与 having 理解 group by 有一个原则,select后面的所有列中,没有使用聚合函数的列必须出现在 gro ...