路径规划

碰撞冲突检测

使用的Informed RRT*简介youtube

在octomap中制定起止点,目标点,使用rrt规划一条路径出来,没有运动学,动力学的限制,只要能避开障碍物。

效果如下(绿线是规划的路线,红线是B样条优化的曲线):

#include "ros/ros.h"
#include <octomap_msgs/Octomap.h>
#include <octomap_msgs/conversions.h>
#include <octomap_ros/conversions.h>
#include <octomap/octomap.h>
#include <message_filters/subscriber.h>
#include "visualization_msgs/Marker.h"
#include <trajectory_msgs/MultiDOFJointTrajectory.h>
#include <nav_msgs/Odometry.h>
#include <geometry_msgs/Pose.h>
#include <nav_msgs/Path.h>
#include <geometry_msgs/PoseStamped.h> #include <ompl/base/spaces/SE3StateSpace.h>
#include <ompl/base/spaces/SE3StateSpace.h>
#include <ompl/base/OptimizationObjective.h>
#include <ompl/base/objectives/PathLengthOptimizationObjective.h>
// #include <ompl/geometric/planners/rrt/RRTstar.h>
#include <ompl/geometric/planners/rrt/InformedRRTstar.h>
#include <ompl/geometric/SimpleSetup.h> #include <ompl/config.h>
#include <iostream> #include "fcl/config.h"
#include "fcl/octree.h"
#include "fcl/traversal/traversal_node_octree.h"
#include "fcl/collision.h"
#include "fcl/broadphase/broadphase.h"
#include "fcl/math/transform.h" namespace ob = ompl::base;
namespace og = ompl::geometric; // Declear some global variables //ROS publishers
ros::Publisher vis_pub;
ros::Publisher traj_pub; class planner {
public:
void setStart(double x, double y, double z)
{
ob::ScopedState<ob::SE3StateSpace> start(space);
start->setXYZ(x,y,z);
start->as<ob::SO3StateSpace::StateType>(1)->setIdentity();
pdef->clearStartStates();
pdef->addStartState(start);
}
void setGoal(double x, double y, double z)
{
ob::ScopedState<ob::SE3StateSpace> goal(space);
goal->setXYZ(x,y,z);
goal->as<ob::SO3StateSpace::StateType>(1)->setIdentity();
pdef->clearGoal();
pdef->setGoalState(goal);
std::cout << "goal set to: " << x << " " << y << " " << z << std::endl;
}
void updateMap(std::shared_ptr<fcl::CollisionGeometry> map)
{
tree_obj = map;
}
// Constructor
planner(void)
{
//四旋翼的障碍物几何形状
Quadcopter = std::shared_ptr<fcl::CollisionGeometry>(new fcl::Box(0.8, 0.8, 0.3));
//分辨率参数设置
fcl::OcTree* tree = new fcl::OcTree(std::shared_ptr<const octomap::OcTree>(new octomap::OcTree(0.15)));
tree_obj = std::shared_ptr<fcl::CollisionGeometry>(tree); //解的状态空间
space = ob::StateSpacePtr(new ob::SE3StateSpace()); // create a start state
ob::ScopedState<ob::SE3StateSpace> start(space); // create a goal state
ob::ScopedState<ob::SE3StateSpace> goal(space); // set the bounds for the R^3 part of SE(3)
// 搜索的三维范围设置
ob::RealVectorBounds bounds(3); bounds.setLow(0,-5);
bounds.setHigh(0,5);
bounds.setLow(1,-5);
bounds.setHigh(1,5);
bounds.setLow(2,0);
bounds.setHigh(2,3); space->as<ob::SE3StateSpace>()->setBounds(bounds); // construct an instance of space information from this state space
si = ob::SpaceInformationPtr(new ob::SpaceInformation(space)); start->setXYZ(0,0,0);
start->as<ob::SO3StateSpace::StateType>(1)->setIdentity();
// start.random(); goal->setXYZ(0,0,0);
goal->as<ob::SO3StateSpace::StateType>(1)->setIdentity();
// goal.random(); // set state validity checking for this space
si->setStateValidityChecker(std::bind(&planner::isStateValid, this, std::placeholders::_1 )); // create a problem instance
pdef = ob::ProblemDefinitionPtr(new ob::ProblemDefinition(si)); // set the start and goal states
pdef->setStartAndGoalStates(start, goal); // set Optimizattion objective
pdef->setOptimizationObjective(planner::getPathLengthObjWithCostToGo(si)); std::cout << "Initialized: " << std::endl;
}
// Destructor
~planner()
{
}
void replan(void)
{ std::cout << "Total Points:" << path_smooth->getStateCount () << std::endl;
if(path_smooth->getStateCount () <= 2)
plan();
else
{
for (std::size_t idx = 0; idx < path_smooth->getStateCount (); idx++)
{
if(!replan_flag)
replan_flag = !isStateValid(path_smooth->getState(idx));
else
break; }
if(replan_flag)
plan();
else
std::cout << "Replanning not required" << std::endl;
} }
void plan(void)
{ // create a planner for the defined space
og::InformedRRTstar* rrt = new og::InformedRRTstar(si); //设置rrt的参数range
rrt->setRange(0.2); ob::PlannerPtr plan(rrt); // set the problem we are trying to solve for the planner
plan->setProblemDefinition(pdef); // perform setup steps for the planner
plan->setup(); // print the settings for this space
si->printSettings(std::cout); std::cout << "problem setting\n";
// print the problem settings
pdef->print(std::cout); // attempt to solve the problem within one second of planning time
ob::PlannerStatus solved = plan->solve(1); if (solved)
{
// get the goal representation from the problem definition (not the same as the goal state)
// and inquire about the found path
std::cout << "Found solution:" << std::endl;
ob::PathPtr path = pdef->getSolutionPath();
og::PathGeometric* pth = pdef->getSolutionPath()->as<og::PathGeometric>();
pth->printAsMatrix(std::cout);
// print the path to screen
// path->print(std::cout); nav_msgs::Path msg;
msg.header.stamp = ros::Time::now();
msg.header.frame_id = "map"; for (std::size_t path_idx = 0; path_idx < pth->getStateCount (); path_idx++)
{
const ob::SE3StateSpace::StateType *se3state = pth->getState(path_idx)->as<ob::SE3StateSpace::StateType>(); // extract the first component of the state and cast it to what we expect
const ob::RealVectorStateSpace::StateType *pos = se3state->as<ob::RealVectorStateSpace::StateType>(0); // extract the second component of the state and cast it to what we expect
const ob::SO3StateSpace::StateType *rot = se3state->as<ob::SO3StateSpace::StateType>(1); geometry_msgs::PoseStamped pose; // pose.header.frame_id = "/world" pose.pose.position.x = pos->values[0];
pose.pose.position.y = pos->values[1];
pose.pose.position.z = pos->values[2]; pose.pose.orientation.x = rot->x;
pose.pose.orientation.y = rot->y;
pose.pose.orientation.z = rot->z;
pose.pose.orientation.w = rot->w; msg.poses.push_back(pose); }
traj_pub.publish(msg); //Path smoothing using bspline
//B样条曲线优化
og::PathSimplifier* pathBSpline = new og::PathSimplifier(si);
path_smooth = new og::PathGeometric(dynamic_cast<const og::PathGeometric&>(*pdef->getSolutionPath()));
pathBSpline->smoothBSpline(*path_smooth,3);
// std::cout << "Smoothed Path" << std::endl;
// path_smooth.print(std::cout); //Publish path as markers nav_msgs::Path smooth_msg;
smooth_msg.header.stamp = ros::Time::now();
smooth_msg.header.frame_id = "map"; for (std::size_t idx = 0; idx < path_smooth->getStateCount (); idx++)
{
// cast the abstract state type to the type we expect
const ob::SE3StateSpace::StateType *se3state = path_smooth->getState(idx)->as<ob::SE3StateSpace::StateType>(); // extract the first component of the state and cast it to what we expect
const ob::RealVectorStateSpace::StateType *pos = se3state->as<ob::RealVectorStateSpace::StateType>(0); // extract the second component of the state and cast it to what we expect
const ob::SO3StateSpace::StateType *rot = se3state->as<ob::SO3StateSpace::StateType>(1); geometry_msgs::PoseStamped point; // pose.header.frame_id = "/world" point.pose.position.x = pos->values[0];
point.pose.position.y = pos->values[1];
point.pose.position.z = pos->values[2]; point.pose.orientation.x = rot->x;
point.pose.orientation.y = rot->y;
point.pose.orientation.z = rot->z;
point.pose.orientation.w = rot->w; smooth_msg.poses.push_back(point); std::cout << "Published marker: " << idx << std::endl;
} vis_pub.publish(smooth_msg);
// ros::Duration(0.1).sleep(); // Clear memory
pdef->clearSolutionPaths();
replan_flag = false; }
else
std::cout << "No solution found" << std::endl;
}
private: // construct the state space we are planning in
ob::StateSpacePtr space; // construct an instance of space information from this state space
ob::SpaceInformationPtr si; // create a problem instance
ob::ProblemDefinitionPtr pdef; og::PathGeometric* path_smooth; bool replan_flag = false; std::shared_ptr<fcl::CollisionGeometry> Quadcopter; std::shared_ptr<fcl::CollisionGeometry> tree_obj; bool isStateValid(const ob::State *state)
{
// cast the abstract state type to the type we expect
const ob::SE3StateSpace::StateType *se3state = state->as<ob::SE3StateSpace::StateType>(); // extract the first component of the state and cast it to what we expect
const ob::RealVectorStateSpace::StateType *pos = se3state->as<ob::RealVectorStateSpace::StateType>(0); // extract the second component of the state and cast it to what we expect
const ob::SO3StateSpace::StateType *rot = se3state->as<ob::SO3StateSpace::StateType>(1); fcl::CollisionObject treeObj((tree_obj));
fcl::CollisionObject aircraftObject(Quadcopter); // check validity of state defined by pos & rot
fcl::Vec3f translation(pos->values[0],pos->values[1],pos->values[2]);
fcl::Quaternion3f rotation(rot->w, rot->x, rot->y, rot->z);
aircraftObject.setTransform(rotation, translation);
fcl::CollisionRequest requestType(1,false,1,false);
fcl::CollisionResult collisionResult;
fcl::collide(&aircraftObject, &treeObj, requestType, collisionResult); return(!collisionResult.isCollision());
} // Returns a structure representing the optimization objective to use
// for optimal motion planning. This method returns an objective which
// attempts to minimize the length in configuration space of computed
// paths.
ob::OptimizationObjectivePtr getThresholdPathLengthObj(const ob::SpaceInformationPtr& si)
{
ob::OptimizationObjectivePtr obj(new ob::PathLengthOptimizationObjective(si));
// obj->setCostThreshold(ob::Cost(1.51));
return obj;
} ob::OptimizationObjectivePtr getPathLengthObjWithCostToGo(const ob::SpaceInformationPtr& si)
{
ob::OptimizationObjectivePtr obj(new ob::PathLengthOptimizationObjective(si));
obj->setCostToGoHeuristic(&ob::goalRegionCostToGo);
return obj;
} }; void octomapCallback(const octomap_msgs::Octomap::ConstPtr &msg, planner* planner_ptr)
{
//loading octree from binary
// const std::string filename = "/home/xiaopeng/dense.bt";
// octomap::OcTree temp_tree(0.1);
// temp_tree.readBinary(filename);
// fcl::OcTree* tree = new fcl::OcTree(std::shared_ptr<const octomap::OcTree>(&temp_tree)); // convert octree to collision object
octomap::OcTree* tree_oct = dynamic_cast<octomap::OcTree*>(octomap_msgs::msgToMap(*msg));
fcl::OcTree* tree = new fcl::OcTree(std::shared_ptr<const octomap::OcTree>(tree_oct)); // Update the octree used for collision checking
planner_ptr->updateMap(std::shared_ptr<fcl::CollisionGeometry>(tree));
planner_ptr->replan();
} void odomCb(const nav_msgs::Odometry::ConstPtr &msg, planner* planner_ptr)
{
planner_ptr->setStart(msg->pose.pose.position.x, msg->pose.pose.position.y, msg->pose.pose.position.z);
} void startCb(const geometry_msgs::PointStamped::ConstPtr &msg, planner* planner_ptr)
{
planner_ptr->setStart(msg->point.x, msg->point.y, msg->point.z);
} void goalCb(const geometry_msgs::PointStamped::ConstPtr &msg, planner* planner_ptr)
{
planner_ptr->setGoal(msg->point.x, msg->point.y, msg->point.z);
planner_ptr->plan();
} int main(int argc, char **argv)
{
ros::init(argc, argv, "octomap_planner");
ros::NodeHandle n;
planner planner_object; ros::Subscriber octree_sub = n.subscribe<octomap_msgs::Octomap>("/octomap_binary", 1, boost::bind(&octomapCallback, _1, &planner_object));
// ros::Subscriber odom_sub = n.subscribe<nav_msgs::Odometry>("/rovio/odometry", 1, boost::bind(&odomCb, _1, &planner_object));
ros::Subscriber goal_sub = n.subscribe<geometry_msgs::PointStamped>("/goal/clicked_point", 1, boost::bind(&goalCb, _1, &planner_object));
ros::Subscriber start_sub = n.subscribe<geometry_msgs::PointStamped>("/start/clicked_point", 1, boost::bind(&startCb, _1, &planner_object)); // vis_pub = n.advertise<visualization_msgs::Marker>( "visualization_marker", 0 );
vis_pub = n.advertise<nav_msgs::Path>( "visualization_marker", 0 );
// traj_pub = n.advertise<trajectory_msgs::MultiDOFJointTrajectory>("waypoints",1);
traj_pub = n.advertise<nav_msgs::Path>("waypoints",1); std::cout << "OMPL version: " << OMPL_VERSION << std::endl; ros::spin(); return 0;
}

octomap中3d-rrt路径规划的更多相关文章

  1. RRT路径规划算法

    传统的路径规划算法有人工势场法.模糊规则法.遗传算法.神经网络.模拟退火算法.蚁群优化算法等.但这些方法都需要在一个确定的空间内对障碍物进行建模,计算复杂度与机器人自由度呈指数关系,不适合解决多自由度 ...

  2. ROS(indigo)RRT路径规划

    源码地址:https://github.com/nalin1096/path_planning 路径规划 使用ROS实现了基于RRT路径规划算法. 发行版 - indigo 算法在有一个障碍的环境找到 ...

  3. RRT路径规划算法(matlab实现)

    基于快速扩展随机树(RRT / rapidly exploring random tree)的路径规划算法,通过对状态空间中的采样点进行碰撞检测,避免了对空间的建模,能够有效地解决高维空间和复杂约束的 ...

  4. V-rep学习笔记:机器人路径规划1

     Motion Planning Library V-REP 从3.3.0开始,使用运动规划库OMPL作为插件,通过调用API的方式代替以前的方法进行运动规划(The old path/motion ...

  5. 游戏AI之路径规划(3)

    目录 使用路径点(Way Point)作为节点 洪水填充算法创建路径点 使用导航网(Navigation Mesh)作为节点 区域分割 预计算 路径查询表 路径成本查询表 寻路的改进 平均帧运算 路径 ...

  6. PRM路径规划算法

    路径规划作为机器人完成各种任务的基础,一直是研究的热点.研究人员提出了许多规划方法:如人工势场法.单元分解法.随机路标图(PRM)法.快速搜索树(RRT)法等.传统的人工势场.单元分解法需要对空间中的 ...

  7. iOS高德地图使用-搜索,路径规划

    项目中想加入地图功能,使用高德地图第三方,想要实现确定一个位置,搜索路线并且显示的方法.耗了一番功夫,总算实现了. 效果 WeChat_1462507820.jpeg 一.配置工作 1.申请key 访 ...

  8. 路径规划: PRM 路径规划算法 (Probabilistic Roadmaps 随机路标图)

    随机路标图-Probabilistic Roadmaps (路径规划算法) 路径规划作为机器人完成各种任务的基础,一直是研究的热点.研究人员提出了许多规划方法如: 1. A* 2. Djstar 3. ...

  9. 机器人路径规划其一 Dijkstra Algorithm【附动态图源码】

    首先要说明的是,机器人路径规划与轨迹规划属于两个不同的概念,一般而言,轨迹规划针对的对象为机器人末端坐标系或者某个关节的位置速度加速度在时域的规划,常用的方法为多项式样条插值,梯形轨迹等等,而路径规划 ...

随机推荐

  1. 如何解决 chrome 58 版本更新导致的 fiddler https 抓包不可用问题

    注意!如果该方法不生效,请先卸载原有 fiddler 后再进行新版本 fiddler 安装步骤即可. chrome 于(上周?上上周?)推送了chrome 58 版本的更新,这次更新中直接去掉了证书未 ...

  2. java web 简单的登录注册

    --sql文件 create database studentgouse studentgocreate table stuinfo(--stuid int primary key identity( ...

  3. 为什么要用Handler ?

    我的理解,Handler的好处之一就是配合子线程处理数据之后控制UI的显示. 如下是http://www.cnblogs.com/sydeveloper/p/3312865.html的完美解释: 当应 ...

  4. 细看JS中的BOM、DOM对象

                                        DOM对象模型  DOM(Document Object Model),是指文档对象模型,是W3C组织推荐的处理可扩展标志语言的 ...

  5. LISTCTRL控件方法

    以下未经说明,listctrl默认view风格为report --------------------------------------------------------------------- ...

  6. C#超简单方法实现两个richtextbox控件滚动条同步滚动

    此文章属于作者原创,转载请注明,谢谢 有时候我们需要实现对照文章等,往往将文本放到两个richtextbox控件中,但是,如果我们需要同步滚动查看,来达到更好的观看效果. 当然,传统的方法重载控件或者 ...

  7. .net 企业管理系统快熟搭建框架

          简言   本人在博客园注册也2年多了,一直没有写自己的博客,因为才疏学浅一直跟着园子里的大哥们学习这.net技术.一年之前跳槽到现在的公司工作,由于公司没有自己一套的开发框架,每次都要重新 ...

  8. 开涛spring3(6.4) - AOP 之 6.4 基于@AspectJ的AOP

    Spring除了支持Schema方式配置AOP,还支持注解方式:使用@AspectJ风格的切面声明. 6.4.1  启用对@AspectJ的支持 Spring默认不支持@AspectJ风格的切面声明, ...

  9. Java反射机制详解(1) -反射定义

    首先,我们在开始前提出一个问题: 1.在运行时,对于一个java类,能否知道属性和方法:能否去调用它的任意方法? 答案是肯定的. 本节所有目录如下: 什么是JAVA的反射机制 JDK中提供的Refle ...

  10. JMeter-MyEclipse编译运行问题(Could not read JMeter properties file)

    JMeter-MyEclipse编译运行问题按照 此贴 http://phoenix0529.iteye.com/blog/1530728 进行配置,然后用Ant编译Build.xml 是可以的. 但 ...