路径规划

碰撞冲突检测

使用的Informed RRT*简介youtube

在octomap中制定起止点,目标点,使用rrt规划一条路径出来,没有运动学,动力学的限制,只要能避开障碍物。

效果如下(绿线是规划的路线,红线是B样条优化的曲线):

#include "ros/ros.h"
#include <octomap_msgs/Octomap.h>
#include <octomap_msgs/conversions.h>
#include <octomap_ros/conversions.h>
#include <octomap/octomap.h>
#include <message_filters/subscriber.h>
#include "visualization_msgs/Marker.h"
#include <trajectory_msgs/MultiDOFJointTrajectory.h>
#include <nav_msgs/Odometry.h>
#include <geometry_msgs/Pose.h>
#include <nav_msgs/Path.h>
#include <geometry_msgs/PoseStamped.h> #include <ompl/base/spaces/SE3StateSpace.h>
#include <ompl/base/spaces/SE3StateSpace.h>
#include <ompl/base/OptimizationObjective.h>
#include <ompl/base/objectives/PathLengthOptimizationObjective.h>
// #include <ompl/geometric/planners/rrt/RRTstar.h>
#include <ompl/geometric/planners/rrt/InformedRRTstar.h>
#include <ompl/geometric/SimpleSetup.h> #include <ompl/config.h>
#include <iostream> #include "fcl/config.h"
#include "fcl/octree.h"
#include "fcl/traversal/traversal_node_octree.h"
#include "fcl/collision.h"
#include "fcl/broadphase/broadphase.h"
#include "fcl/math/transform.h" namespace ob = ompl::base;
namespace og = ompl::geometric; // Declear some global variables //ROS publishers
ros::Publisher vis_pub;
ros::Publisher traj_pub; class planner {
public:
void setStart(double x, double y, double z)
{
ob::ScopedState<ob::SE3StateSpace> start(space);
start->setXYZ(x,y,z);
start->as<ob::SO3StateSpace::StateType>(1)->setIdentity();
pdef->clearStartStates();
pdef->addStartState(start);
}
void setGoal(double x, double y, double z)
{
ob::ScopedState<ob::SE3StateSpace> goal(space);
goal->setXYZ(x,y,z);
goal->as<ob::SO3StateSpace::StateType>(1)->setIdentity();
pdef->clearGoal();
pdef->setGoalState(goal);
std::cout << "goal set to: " << x << " " << y << " " << z << std::endl;
}
void updateMap(std::shared_ptr<fcl::CollisionGeometry> map)
{
tree_obj = map;
}
// Constructor
planner(void)
{
//四旋翼的障碍物几何形状
Quadcopter = std::shared_ptr<fcl::CollisionGeometry>(new fcl::Box(0.8, 0.8, 0.3));
//分辨率参数设置
fcl::OcTree* tree = new fcl::OcTree(std::shared_ptr<const octomap::OcTree>(new octomap::OcTree(0.15)));
tree_obj = std::shared_ptr<fcl::CollisionGeometry>(tree); //解的状态空间
space = ob::StateSpacePtr(new ob::SE3StateSpace()); // create a start state
ob::ScopedState<ob::SE3StateSpace> start(space); // create a goal state
ob::ScopedState<ob::SE3StateSpace> goal(space); // set the bounds for the R^3 part of SE(3)
// 搜索的三维范围设置
ob::RealVectorBounds bounds(3); bounds.setLow(0,-5);
bounds.setHigh(0,5);
bounds.setLow(1,-5);
bounds.setHigh(1,5);
bounds.setLow(2,0);
bounds.setHigh(2,3); space->as<ob::SE3StateSpace>()->setBounds(bounds); // construct an instance of space information from this state space
si = ob::SpaceInformationPtr(new ob::SpaceInformation(space)); start->setXYZ(0,0,0);
start->as<ob::SO3StateSpace::StateType>(1)->setIdentity();
// start.random(); goal->setXYZ(0,0,0);
goal->as<ob::SO3StateSpace::StateType>(1)->setIdentity();
// goal.random(); // set state validity checking for this space
si->setStateValidityChecker(std::bind(&planner::isStateValid, this, std::placeholders::_1 )); // create a problem instance
pdef = ob::ProblemDefinitionPtr(new ob::ProblemDefinition(si)); // set the start and goal states
pdef->setStartAndGoalStates(start, goal); // set Optimizattion objective
pdef->setOptimizationObjective(planner::getPathLengthObjWithCostToGo(si)); std::cout << "Initialized: " << std::endl;
}
// Destructor
~planner()
{
}
void replan(void)
{ std::cout << "Total Points:" << path_smooth->getStateCount () << std::endl;
if(path_smooth->getStateCount () <= 2)
plan();
else
{
for (std::size_t idx = 0; idx < path_smooth->getStateCount (); idx++)
{
if(!replan_flag)
replan_flag = !isStateValid(path_smooth->getState(idx));
else
break; }
if(replan_flag)
plan();
else
std::cout << "Replanning not required" << std::endl;
} }
void plan(void)
{ // create a planner for the defined space
og::InformedRRTstar* rrt = new og::InformedRRTstar(si); //设置rrt的参数range
rrt->setRange(0.2); ob::PlannerPtr plan(rrt); // set the problem we are trying to solve for the planner
plan->setProblemDefinition(pdef); // perform setup steps for the planner
plan->setup(); // print the settings for this space
si->printSettings(std::cout); std::cout << "problem setting\n";
// print the problem settings
pdef->print(std::cout); // attempt to solve the problem within one second of planning time
ob::PlannerStatus solved = plan->solve(1); if (solved)
{
// get the goal representation from the problem definition (not the same as the goal state)
// and inquire about the found path
std::cout << "Found solution:" << std::endl;
ob::PathPtr path = pdef->getSolutionPath();
og::PathGeometric* pth = pdef->getSolutionPath()->as<og::PathGeometric>();
pth->printAsMatrix(std::cout);
// print the path to screen
// path->print(std::cout); nav_msgs::Path msg;
msg.header.stamp = ros::Time::now();
msg.header.frame_id = "map"; for (std::size_t path_idx = 0; path_idx < pth->getStateCount (); path_idx++)
{
const ob::SE3StateSpace::StateType *se3state = pth->getState(path_idx)->as<ob::SE3StateSpace::StateType>(); // extract the first component of the state and cast it to what we expect
const ob::RealVectorStateSpace::StateType *pos = se3state->as<ob::RealVectorStateSpace::StateType>(0); // extract the second component of the state and cast it to what we expect
const ob::SO3StateSpace::StateType *rot = se3state->as<ob::SO3StateSpace::StateType>(1); geometry_msgs::PoseStamped pose; // pose.header.frame_id = "/world" pose.pose.position.x = pos->values[0];
pose.pose.position.y = pos->values[1];
pose.pose.position.z = pos->values[2]; pose.pose.orientation.x = rot->x;
pose.pose.orientation.y = rot->y;
pose.pose.orientation.z = rot->z;
pose.pose.orientation.w = rot->w; msg.poses.push_back(pose); }
traj_pub.publish(msg); //Path smoothing using bspline
//B样条曲线优化
og::PathSimplifier* pathBSpline = new og::PathSimplifier(si);
path_smooth = new og::PathGeometric(dynamic_cast<const og::PathGeometric&>(*pdef->getSolutionPath()));
pathBSpline->smoothBSpline(*path_smooth,3);
// std::cout << "Smoothed Path" << std::endl;
// path_smooth.print(std::cout); //Publish path as markers nav_msgs::Path smooth_msg;
smooth_msg.header.stamp = ros::Time::now();
smooth_msg.header.frame_id = "map"; for (std::size_t idx = 0; idx < path_smooth->getStateCount (); idx++)
{
// cast the abstract state type to the type we expect
const ob::SE3StateSpace::StateType *se3state = path_smooth->getState(idx)->as<ob::SE3StateSpace::StateType>(); // extract the first component of the state and cast it to what we expect
const ob::RealVectorStateSpace::StateType *pos = se3state->as<ob::RealVectorStateSpace::StateType>(0); // extract the second component of the state and cast it to what we expect
const ob::SO3StateSpace::StateType *rot = se3state->as<ob::SO3StateSpace::StateType>(1); geometry_msgs::PoseStamped point; // pose.header.frame_id = "/world" point.pose.position.x = pos->values[0];
point.pose.position.y = pos->values[1];
point.pose.position.z = pos->values[2]; point.pose.orientation.x = rot->x;
point.pose.orientation.y = rot->y;
point.pose.orientation.z = rot->z;
point.pose.orientation.w = rot->w; smooth_msg.poses.push_back(point); std::cout << "Published marker: " << idx << std::endl;
} vis_pub.publish(smooth_msg);
// ros::Duration(0.1).sleep(); // Clear memory
pdef->clearSolutionPaths();
replan_flag = false; }
else
std::cout << "No solution found" << std::endl;
}
private: // construct the state space we are planning in
ob::StateSpacePtr space; // construct an instance of space information from this state space
ob::SpaceInformationPtr si; // create a problem instance
ob::ProblemDefinitionPtr pdef; og::PathGeometric* path_smooth; bool replan_flag = false; std::shared_ptr<fcl::CollisionGeometry> Quadcopter; std::shared_ptr<fcl::CollisionGeometry> tree_obj; bool isStateValid(const ob::State *state)
{
// cast the abstract state type to the type we expect
const ob::SE3StateSpace::StateType *se3state = state->as<ob::SE3StateSpace::StateType>(); // extract the first component of the state and cast it to what we expect
const ob::RealVectorStateSpace::StateType *pos = se3state->as<ob::RealVectorStateSpace::StateType>(0); // extract the second component of the state and cast it to what we expect
const ob::SO3StateSpace::StateType *rot = se3state->as<ob::SO3StateSpace::StateType>(1); fcl::CollisionObject treeObj((tree_obj));
fcl::CollisionObject aircraftObject(Quadcopter); // check validity of state defined by pos & rot
fcl::Vec3f translation(pos->values[0],pos->values[1],pos->values[2]);
fcl::Quaternion3f rotation(rot->w, rot->x, rot->y, rot->z);
aircraftObject.setTransform(rotation, translation);
fcl::CollisionRequest requestType(1,false,1,false);
fcl::CollisionResult collisionResult;
fcl::collide(&aircraftObject, &treeObj, requestType, collisionResult); return(!collisionResult.isCollision());
} // Returns a structure representing the optimization objective to use
// for optimal motion planning. This method returns an objective which
// attempts to minimize the length in configuration space of computed
// paths.
ob::OptimizationObjectivePtr getThresholdPathLengthObj(const ob::SpaceInformationPtr& si)
{
ob::OptimizationObjectivePtr obj(new ob::PathLengthOptimizationObjective(si));
// obj->setCostThreshold(ob::Cost(1.51));
return obj;
} ob::OptimizationObjectivePtr getPathLengthObjWithCostToGo(const ob::SpaceInformationPtr& si)
{
ob::OptimizationObjectivePtr obj(new ob::PathLengthOptimizationObjective(si));
obj->setCostToGoHeuristic(&ob::goalRegionCostToGo);
return obj;
} }; void octomapCallback(const octomap_msgs::Octomap::ConstPtr &msg, planner* planner_ptr)
{
//loading octree from binary
// const std::string filename = "/home/xiaopeng/dense.bt";
// octomap::OcTree temp_tree(0.1);
// temp_tree.readBinary(filename);
// fcl::OcTree* tree = new fcl::OcTree(std::shared_ptr<const octomap::OcTree>(&temp_tree)); // convert octree to collision object
octomap::OcTree* tree_oct = dynamic_cast<octomap::OcTree*>(octomap_msgs::msgToMap(*msg));
fcl::OcTree* tree = new fcl::OcTree(std::shared_ptr<const octomap::OcTree>(tree_oct)); // Update the octree used for collision checking
planner_ptr->updateMap(std::shared_ptr<fcl::CollisionGeometry>(tree));
planner_ptr->replan();
} void odomCb(const nav_msgs::Odometry::ConstPtr &msg, planner* planner_ptr)
{
planner_ptr->setStart(msg->pose.pose.position.x, msg->pose.pose.position.y, msg->pose.pose.position.z);
} void startCb(const geometry_msgs::PointStamped::ConstPtr &msg, planner* planner_ptr)
{
planner_ptr->setStart(msg->point.x, msg->point.y, msg->point.z);
} void goalCb(const geometry_msgs::PointStamped::ConstPtr &msg, planner* planner_ptr)
{
planner_ptr->setGoal(msg->point.x, msg->point.y, msg->point.z);
planner_ptr->plan();
} int main(int argc, char **argv)
{
ros::init(argc, argv, "octomap_planner");
ros::NodeHandle n;
planner planner_object; ros::Subscriber octree_sub = n.subscribe<octomap_msgs::Octomap>("/octomap_binary", 1, boost::bind(&octomapCallback, _1, &planner_object));
// ros::Subscriber odom_sub = n.subscribe<nav_msgs::Odometry>("/rovio/odometry", 1, boost::bind(&odomCb, _1, &planner_object));
ros::Subscriber goal_sub = n.subscribe<geometry_msgs::PointStamped>("/goal/clicked_point", 1, boost::bind(&goalCb, _1, &planner_object));
ros::Subscriber start_sub = n.subscribe<geometry_msgs::PointStamped>("/start/clicked_point", 1, boost::bind(&startCb, _1, &planner_object)); // vis_pub = n.advertise<visualization_msgs::Marker>( "visualization_marker", 0 );
vis_pub = n.advertise<nav_msgs::Path>( "visualization_marker", 0 );
// traj_pub = n.advertise<trajectory_msgs::MultiDOFJointTrajectory>("waypoints",1);
traj_pub = n.advertise<nav_msgs::Path>("waypoints",1); std::cout << "OMPL version: " << OMPL_VERSION << std::endl; ros::spin(); return 0;
}

octomap中3d-rrt路径规划的更多相关文章

  1. RRT路径规划算法

    传统的路径规划算法有人工势场法.模糊规则法.遗传算法.神经网络.模拟退火算法.蚁群优化算法等.但这些方法都需要在一个确定的空间内对障碍物进行建模,计算复杂度与机器人自由度呈指数关系,不适合解决多自由度 ...

  2. ROS(indigo)RRT路径规划

    源码地址:https://github.com/nalin1096/path_planning 路径规划 使用ROS实现了基于RRT路径规划算法. 发行版 - indigo 算法在有一个障碍的环境找到 ...

  3. RRT路径规划算法(matlab实现)

    基于快速扩展随机树(RRT / rapidly exploring random tree)的路径规划算法,通过对状态空间中的采样点进行碰撞检测,避免了对空间的建模,能够有效地解决高维空间和复杂约束的 ...

  4. V-rep学习笔记:机器人路径规划1

     Motion Planning Library V-REP 从3.3.0开始,使用运动规划库OMPL作为插件,通过调用API的方式代替以前的方法进行运动规划(The old path/motion ...

  5. 游戏AI之路径规划(3)

    目录 使用路径点(Way Point)作为节点 洪水填充算法创建路径点 使用导航网(Navigation Mesh)作为节点 区域分割 预计算 路径查询表 路径成本查询表 寻路的改进 平均帧运算 路径 ...

  6. PRM路径规划算法

    路径规划作为机器人完成各种任务的基础,一直是研究的热点.研究人员提出了许多规划方法:如人工势场法.单元分解法.随机路标图(PRM)法.快速搜索树(RRT)法等.传统的人工势场.单元分解法需要对空间中的 ...

  7. iOS高德地图使用-搜索,路径规划

    项目中想加入地图功能,使用高德地图第三方,想要实现确定一个位置,搜索路线并且显示的方法.耗了一番功夫,总算实现了. 效果 WeChat_1462507820.jpeg 一.配置工作 1.申请key 访 ...

  8. 路径规划: PRM 路径规划算法 (Probabilistic Roadmaps 随机路标图)

    随机路标图-Probabilistic Roadmaps (路径规划算法) 路径规划作为机器人完成各种任务的基础,一直是研究的热点.研究人员提出了许多规划方法如: 1. A* 2. Djstar 3. ...

  9. 机器人路径规划其一 Dijkstra Algorithm【附动态图源码】

    首先要说明的是,机器人路径规划与轨迹规划属于两个不同的概念,一般而言,轨迹规划针对的对象为机器人末端坐标系或者某个关节的位置速度加速度在时域的规划,常用的方法为多项式样条插值,梯形轨迹等等,而路径规划 ...

随机推荐

  1. 【iOS开发】3.UIViewController

    1.概述 iOS和相关库的开发大量使用了模型-视图-控制器(MVC)模式.一般而言,MVC是一种策略,用于分离展现(视图).数据(模型)和业务逻辑(控制器).确切地讲,模型是简单数据,如Person或 ...

  2. 如何将angular-ui的图片轮播组件封装成一个指令

    在项目开发中我们经常会遇到图片轮播的功能点: 如果我们开发人员自己原生手写,将会花费很多的时间,最终得不偿失. 接下来就详细说说如何使用angular-ui发热图片轮播模块,并且将它写成一个指令(便于 ...

  3. ios模拟器bug

    Error: xcode-select: error: tool 'xcodebuild' requires Xcode, but active developer directory '/Libra ...

  4. Alamofire源码解读系列(十二)之请求(Request)

    本篇是Alamofire中的请求抽象层的讲解 前言 在Alamofire中,围绕着Request,设计了很多额外的特性,这也恰恰表明,Request是所有请求的基础部分和发起点.这无疑给我们一个Req ...

  5. JS执行事件

    先贴出几个名词: 同步任务: 在主线程上排队执行的任务,只有前一个任务执行完毕,才能执行后一个任务 异步任务:   不进入主线程,而进入"任务队列"的任务,只有任务队列通知主线程, ...

  6. Java IO详解(六)------随机访问文件流

    File 类的介绍:http://www.cnblogs.com/ysocean/p/6851878.html Java IO 流的分类介绍:http://www.cnblogs.com/ysocea ...

  7. Swift 中 String 取下标及性能问题

    Swift 中 String 取下标及性能问题 取下标 String String 用 String.Index 取下标(subscript)得到 Character,String.Index 要从 ...

  8. 【PHP】文件写入和读取详解

    文章提纲: 一.实现文件读取和写入的基本思路 二.使用fopen方法打开文件 三.文件读取和文件写入操作 四.使用fclose方法关闭文件 五.文件指针的移动 六.Windows和UNIX下的回车和换 ...

  9. 关于微信分享JSSDK使用需注意的几点问题

    微信公众平台技术文档中有微信JS-SDK说明文档,详情见地址https://mp.weixin.qq.com/wiki 官方给出了使用步骤和DEMO,下面说一下几点需要注意的问题. 1.登录微信公众平 ...

  10. 关于IOS sourcetree 注册 2017最新hosts

    今天用sourcetree  git管理工具的时候,第一次打开发现需要注册. 在网上搜索了一下教程,发现现在新版本没有  (我同意协议)这个条款,这就尴尬.我以前没有sourcetree的账号. 试了 ...