BlockiOS开发中一种比较特殊的数据结构,它可以保存一段代码,在合适的地方再调用,具有语法简介、回调方便、编程思路清晰、执行效率高等优点,受到众多猿猿的喜爱。但是Block在使用过程中,如果对Block理解不深刻,容易出现Cycle Retain的问题。本文主要从ARC模式下解析一下Block的底层实现,以及Block的三种类型(栈、堆、全局)的区别。

一、Block定义

1. Block 定义及使用

返回值类型 (^block变量名)(形参列表) = ^返回值类型 (形参列表) {
}; // 调用Block保存的代码
block变量名(实参);

2. 项目中使用格式

在项目中,通常会重新定义block的类型的别名,然后用别名来定义block的类型

// 定义block类型
typedef void (^Block)(int); // 定义block
Block block = ^(int a){}; // 调用block
block(3);

二、Block底层实现

block的底层实现是结构体,和类的底层实现类似,都有isa指针,可以把block当成是一个对象。下面通过创建一个控制台程序,来窥探block的底层实现

1. block内存结构

block 的内存结构图

Block_layout结构体成员含义如下:

  • isa: 指向所属类的指针,也就是block的类型
  • flags: 标志变量,在实现block的内部操作时会用到
  • Reserved: 保留变量
  • invoke: block执行时调用的函数指针,block内部的执行代码都在这个函数中
  • descriptor: block的详细描述,包含 copy/dispose 函数,处理block引用外部变量时使用
  • variables: block范围外的变量,如果block没有调用任何外部变量,该变量就不存在

Block_descriptor结构体成员含义如下:

  • reserved: 保留变量
  • size: block的内存大小
  • copy: 拷贝block中被 __block 修饰的外部变量
  • dispose: 和 copy 方法配置应用,用来释放资源

具体实现代码如下(代码来自Block_private.h):

enum {
BLOCK_REFCOUNT_MASK = (0xffff),
BLOCK_NEEDS_FREE = (1 << 24),
BLOCK_HAS_COPY_DISPOSE = (1 << 25),
BLOCK_HAS_CTOR = (1 << 26), /* Helpers have C++ code. */
BLOCK_IS_GC = (1 << 27),
BLOCK_IS_GLOBAL = (1 << 28),
BLOCK_HAS_DESCRIPTOR = (1 << 29)
}; /* Revised new layout. */
struct Block_descriptor {
unsigned long int reserved;
unsigned long int size;
void (*copy)(void *dst, void *src);
void (*dispose)(void *);
}; struct Block_layout {
void *isa;
int flags;
int reserved;
void (*invoke)(void *, ...);
struct Block_descriptor *descriptor;
/* Imported variables. */
};

2. 创建block

int main(int argc, const char * argv[]) {
@autoreleasepool { // 最简block
^{ };
}
return 0;
}

3. 转换结构

利用 clang*.m 的文件转换为 *.cpp 文件,就可以看到 block 的底层实现了

$ clang -rewrite-objc main.m

转换后的代码:

struct __block_impl {
void *isa;
int Flags;
int Reserved;
void *FuncPtr;
}; struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
} static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
int main(int argc, const char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
(void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA);
}
return 0;
}

从代码中可以看出,__main_block_impl_0就是blockC++实现(最后面的_0代表是main中的第几个block),__main_block_func_0block的代码块,__main_block_desc_0block的描述,__block_implblock的定义。

__block_impl成员含义如下:

  • isa: 指向所属类的指针,也就是block的类型
  • flags,标志变量,在实现block的内部操作时会用到
  • Reserved,保留变量
  • FuncPtr,block执行时调用的函数指针

__main_block_impl_0解释如下:

  • impl: block对象
  • Desc: block对象的描述

其中,__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) 这是显式构造函数,flags的默认值为0,函数体如下:

__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}

可以看出:

  • __main_block_impl_0的isa指针指向了_NSConcreteStackBlock,所有的局部block都是在栈上门创建
  • 从main函数中看, __main_block_impl_0的FuncPtr指向了函数__main_block_func_0
  • __main_block_impl_0的Desc也指向了定义__main_block_desc_0时就创建的__main_block_desc_0_DATA,其中Block_size记录了block结构体大小等信息

__main_block_desc_0成员含义如下:

  • reserved: 保留变量
  • Block_size: block内存大小,sizeof(struct __main_block_impl_0)

三、Block类型

block有三种类型:

  • _NSConcreteGlobalBlock: 存储在全局数据区
  • _NSConcreteStackBlock: 存储在栈区
  • _NSConcreteMallocBlock: 存储在堆区

APUE的进程虚拟内存段分布图如下:

其中,_NSConcreteGlobalBlock_NSConcreteStackBlock 可以由程序创建,而 _NSConcreteMallocBlock 则无法由程序创建,只能由 _NSConcreteStackBlock 通过拷贝生成。

1. 全局block 和 栈block

测试代码如下:

void (^globalBlock)() = ^{

};

int main(int argc, const char * argv[]) {
@autoreleasepool { void (^stackBlock1)() = ^{ };
}
return 0;
}

clang转换后的代码如下:

// globalBlock
struct __globalBlock_block_impl_0 {
...
__globalBlock_block_impl_0(void *fp, struct __globalBlock_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteGlobalBlock;
...
}
};
... // stackBlock
struct __main_block_impl_0 {
...
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
...
}
};
...
int main(int argc, const char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
void (*stackBlock)() = (void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA);
}
return 0;
}

可以看出, globalBlockisa 指向了 _NSConcreteGlobalBlock,即在全局区域创建,编译时其具体代码在代码段中,block变量则存储在全局数据区;而stackBlockisa 则指向了 _NSConcreteStackBlock,表明在栈区创建。

2. 捕获外部参数对栈区block结构的影响

由于堆区 block 是由栈区 block 转化而成, 所以下面主要分析栈区 block 如何转化为堆区 block

捕获局部非静态变量

代码:

    int a = 0;
^{a;};

转化后:

struct __Person__test_block_impl_0 {
...
int a;
// a(_a)是构造函数的参数列表初始化形式,相当于a = _a。从_I_Person_test看,传入的就是a
__Person__test_block_impl_0(void *fp, struct __Person__test_block_desc_0 *desc, int _a, int flags=0) : a(_a) {
impl.isa = &_NSConcreteStackBlock;
...
}
}; static void _I_Person_test(Person * self, SEL _cmd) {
int a;
(void (*)())&__Person__test_block_impl_0((void *)__Person__test_block_func_0, &__Person__test_block_desc_0_DATA, a);
}

可以看到,block 对于栈区变量的引用只是值传递,由于 block 内部变量 a 和 外部变量 a 不在同一个作用域,所以在 block 内部不能把变量 a 作为左值(left-value),因为赋值没有意义。所以,如果出现如下代码,编译器会提示错误:

a = 10;

捕获局部静态变量

代码:

	static int a;
^{
a = 10;
};

转换后:

struct __Person__test_block_impl_0 {
...
int *a;
__Person__test_block_impl_0(void *fp, struct __Person__test_block_desc_0 *desc, int *_a, int flags=0) : a(_a) {
impl.isa = &_NSConcreteStackBlock;
...
}
};
static void __Person__test_block_func_0(struct __Person__test_block_impl_0 *__cself) {
int *a = __cself->a; // bound by copy
// 这里通过局部静态变量a的地址来对其进行修改
(*a) = 10;
} static void _I_Person_test(Person * self, SEL _cmd) {
static int a;
// 传入a的地址
(void (*)())&__Person__test_block_impl_0((void *)__Person__test_block_func_0, &__Person__test_block_desc_0_DATA, &a);
}

由于局部静态变量也存储在静态数据区,和程序拥有一样的生命周期,但是其作用范围局限在定义它的函数中,所有在block里是通过地址来访问。

捕获全局变量

代码:

// 全局静态
static int a;
// 全局
int b;
- (void)test
{ ^{
a = 10;
b = 10;
};
}

转换后:

static int a;
int b; static void __Person__test_block_func_0(struct __Person__test_block_impl_0 *__cself) { a = 10;
b = 10;
} static void _I_Person_test(Person * self, SEL _cmd) { (void (*)())&__Person__test_block_impl_0((void *)__Person__test_block_func_0, &__Person__test_block_desc_0_DATA);
}

可以看出,因为全局变量都在静态数据区,在程序结束前不会被销毁,所以block直接访问了对应的变量,而没有在Persontest_block_impl_0结构体中给变量预留位置。

捕获对象的变量

代码:

@interface Person()
{
int _a;
} @end @implementation Person - (void)test
{
void (^block)() = ^{
_a;
};
} @end

转换后:

struct __Person__test_block_impl_0 {
...
Person *self;
__Person__test_block_impl_0(void *fp, struct __Person__test_block_desc_0 *desc, Person *_self, int flags=0) : self(_self) {
impl.isa = &_NSConcreteStackBlock;
...
}
}; static void __Person__test_block_func_0(struct __Person__test_block_impl_0 *__cself) {
Person *self = __cself->self; // bound by copy (*(int *)((char *)self + OBJC_IVAR_$_Person$_a));
} static void _I_Person_test(Person * self, SEL _cmd) {
void (*block)() = ((void (*)())&__Person__test_block_impl_0((void *)__Person__test_block_func_0, &__Person__test_block_desc_0_DATA, self, 570425344));
}

可以看到,即使 block只是引用对象的变量,但是底层依然引用的是对象本身 self,这和直接使用 self.a产生的循环引用的问题是一样的。所以,要在 block 内使用对象的弱引用,即可解决循环引用的问题。并且,对变量a的访问也是通过 self的地址加 a的偏移量的形式。

捕获__block修饰的基本变量

代码:

	__block int a;
^{
a = 10;
};

转换后:

struct __Block_byref_a_0 {
void *__isa;
__Block_byref_a_0 *__forwarding;
int __flags;
int __size;
int a;
}; struct __main_block_impl_0 {
...
__Block_byref_a_0 *a; // by ref
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, __Block_byref_a_0 *_a, int flags=0) : a(_a->__forwarding) {
impl.isa = &_NSConcreteStackBlock;
...
}
}; static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
__Block_byref_a_0 *a = __cself->a; // bound by ref
(a->__forwarding->a) = 10;
} static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {_Block_object_assign((void*)&dst->a, (void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);} static void __main_block_dispose_0(struct __main_block_impl_0*src) {_Block_object_dispose((void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);} static struct __main_block_desc_0 {
...
void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0}; int main(int argc, const char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool; __attribute__((__blocks__(byref))) __Block_byref_a_0 a = {(void*)0,(__Block_byref_a_0 *)&a, 0, sizeof(__Block_byref_a_0), 1}; ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, (__Block_byref_a_0 *)&a, 570425344));
}
return 0;
}

可以看到,被__block修饰的变量被封装成了一个对象,类型为__Block_byref_a_0,然后把&a作为参数传给了block

__Block_byref_a_0 成员含义如下:

  • __isa: 指向所属类的指针,被初始化为 (void*)0
  • __forwarding: 指向对象在堆中的拷贝
  • __flags: 标志变量,在实现block的内部操作时会用到
  • __size: 对象的内存大小
  • a: 原始类型的变量

其中,isa__flags__size 的含义和之前类似,而 __forwarding 是用来指向对象在堆中的拷贝,runtime.c 里有源码说明:

static void _Block_byref_assign_copy(void *dest, const void *arg, const int flags) {
...
struct Block_byref *copy = (struct Block_byref *)_Block_allocator(src->size, false, isWeak);
copy->flags = src->flags | _Byref_flag_initial_value; // non-GC one for caller, one for stack
// 堆中拷贝的forwarding指向它自己
copy->forwarding = copy; // patch heap copy to point to itself (skip write-barrier)
// 栈中的forwarding指向堆中的拷贝
src->forwarding = copy; // patch stack to point to heap copy
copy->size = src->size;
...
}

这样做是为了保证在 block内 或 block 变量后面对变量a的访问,都是直接访问堆内的对象,而不上栈上的变量。同时,在 block 拷贝到堆内时,它所捕获的由 __block 修饰的局部基本类型也会被拷贝到堆内(拷贝的是封装后的对象),从而会有 copydispose处理函数。

Block_byref的结构定义在 Block_private.h 文件里有介绍:

struct Block_byref {
void *isa;
struct Block_byref *forwarding;
int flags; /* refcount; */
int size;
void (*byref_keep)(struct Block_byref *dst, struct Block_byref *src);
void (*byref_destroy)(struct Block_byref *);
/* long shared[0]; */
}; // flags/_flags类型
enum {
/* See function implementation for a more complete description of these fields and combinations */
// 是一个对象
BLOCK_FIELD_IS_OBJECT = 3, /* id, NSObject, __attribute__((NSObject)), block, ... */
// 是一个block
BLOCK_FIELD_IS_BLOCK = 7, /* a block variable */
// 被__block修饰的变量
BLOCK_FIELD_IS_BYREF = 8, /* the on stack structure holding the __block variable */
// 被__weak修饰的变量,只能被辅助copy函数使用
BLOCK_FIELD_IS_WEAK = 16, /* declared __weak, only used in byref copy helpers */
// block辅助函数调用(告诉内部实现不要进行retain或者copy)
BLOCK_BYREF_CALLER = 128 /* called from __block (byref) copy/dispose support routines. */
};

可以看到,Block_byref__Block_byref_a_0 的前4个成员类型相同,可以互相转化。

** copy 函数

copy 的实现函数是 _Block_object_assign,它根据对象的 flags 来判断是否需要拷贝,或者只是赋值,函数实现在 runtime.c 里:

// _Block_object_assign源码
void _Block_object_assign(void *destAddr, const void *object, const int flags) {
...
else if ((flags & BLOCK_FIELD_IS_BYREF) == BLOCK_FIELD_IS_BYREF) {
// copying a __block reference from the stack Block to the heap
// flags will indicate if it holds a __weak reference and needs a special isa
_Block_byref_assign_copy(destAddr, object, flags);
}
...
} // _Block_byref_assign_copy源码
static void _Block_byref_assign_copy(void *dest, const void *arg, const int flags) {
// 这里因为前面4个成员的内存分布一样,所以直接转换后,使用Block_byref的成员变量名,能访问到__Block_byref_a_0的前面4个成员
struct Block_byref **destp = (struct Block_byref **)dest;
struct Block_byref *src = (struct Block_byref *)arg;
...
else if ((src->forwarding->flags & BLOCK_REFCOUNT_MASK) == 0) {
// 从main函数对__Block_byref_a_0的初始化,可以看到初始化时将flags赋值为0
// 这里表示第一次拷贝,会进行复制操作,并修改原来flags的值
// static int _Byref_flag_initial_value = BLOCK_NEEDS_FREE | 2;
// 可以看出,复制后,会并入BLOCK_NEEDS_FREE,后面的2是block的初始引用计数
...
copy->flags = src->flags | _Byref_flag_initial_value;
...
}
// 已经拷贝到堆了,只增加引用计数
else if ((src->forwarding->flags & BLOCK_NEEDS_FREE) == BLOCK_NEEDS_FREE) {
latching_incr_int(&src->forwarding->flags);
}
// 普通的赋值,里面最底层就*destptr = value;这句表达式
_Block_assign(src->forwarding, (void **)destp);
}

主要操作都在代码注释中了,总体来说,__block修饰的基本类型会被包装为对象,并且只在最初block拷贝时复制一次,后面的拷贝只会增加这个捕获变量的引用计数。

** dispose 函数

dispose 的实现函数是 _Block_object_dispose,代码依然可以在 runtime.c 里:

void _Block_object_dispose(const void *object, const int flags) {
//printf("_Block_object_dispose(%p, %x)\n", object, flags);
if (flags & BLOCK_FIELD_IS_BYREF) {
// get rid of the __block data structure held in a Block
_Block_byref_release(object);
}
...
} // Old compiler SPI
static void _Block_byref_release(const void *arg) {
struct Block_byref *shared_struct = (struct Block_byref *)arg;
int refcount; // dereference the forwarding pointer since the compiler isn't doing this anymore (ever?)
shared_struct = shared_struct->forwarding; ...
refcount = shared_struct->flags & BLOCK_REFCOUNT_MASK;
...
else if ((latching_decr_int(&shared_struct->flags) & BLOCK_REFCOUNT_MASK) == 0) {
...
}
}

可以看到,被__block修改的变量,释放时要 latching_decr_int减引用计数,直到计数为0,就释放改对象;而普通的对象、block,就直接释放销毁。

捕获没有__block修饰的对象

代码:

	NSObject *a = [[NSObject alloc] init];
Block block = ^ {
a;
};

转换后部分结果如下:

static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
NSObject *a = __cself->a; // bound by copy
a;
} static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {_Block_object_assign((void*)&dst->a, (void*)src->a, 3/*BLOCK_FIELD_IS_OBJECT*/);} static void __main_block_dispose_0(struct __main_block_impl_0*src) {_Block_object_dispose((void*)src->a, 3/*BLOCK_FIELD_IS_OBJECT*/);} int main(int argc, const char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
...
Block block = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, a, 570425344));
}
return 0;
}

对象在没有__block修饰时,并没有产生__Block_byref_a_0结构体,只是将标志位修改为BLOCK_FIELD_IS_OBJECT。而在_Block_object_assign中对应的判断分支代码如下:

...
else if ((flags & BLOCK_FIELD_IS_OBJECT) == BLOCK_FIELD_IS_OBJECT) {
_Block_retain_object(object);
_Block_assign((void *)object, destAddr);
}
...

可以看到,block复制时,会retain捕捉对象,以增加其引用计数。

捕获有__block修饰的对象

代码:

    __block NSObject *a = [[NSObject alloc] init];
Block block = ^ {
a;
};

转化后部分结果如下:

struct __Block_byref_a_0 {
void *__isa;
__Block_byref_a_0 *__forwarding;
int __flags;
int __size;
void (*__Block_byref_id_object_copy)(void*, void*);
void (*__Block_byref_id_object_dispose)(void*);
NSObject *a;
};
int main(int argc, const char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
attribute__((__blocks__(byref))) __Block_byref_a_0 a = {(void*)0,(__Block_byref_a_0 *)&a, 33554432, sizeof(__Block_byref_a_0), __Block_byref_id_object_copy_131, __Block_byref_id_object_dispose_131,....};
Block block = (void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, (__Block_byref_a_0 *)&a, 570425344);
} // 以下的40表示__Block_byref_a_0对象a的位移(4个指针(32字节)+2个int变量(8字节)=40字节)
static void __Block_byref_id_object_copy_131(void *dst, void *src) {
_Block_object_assign((char*)dst + 40, *(void * *) ((char*)src + 40), 131);
}
static void __Block_byref_id_object_dispose_131(void *src) {
_Block_object_dispose(*(void * *) ((char*)src + 40), 131);
}

可以看到,对于对象,处理增加了__Block_byref_a_0外,还另外增加了两个辅助函数__Block_byref_id_object_copy__Block_byref_id_object_dispose,以实现对对象内存的管理。其中两者的最后一个参数131表示BLOCK_BYREF_CALLER|BLOCK_FIELD_IS_OBJECTBLOCK_BYREF_CALLER表示在内部实现中不对a对象进行retaincopy;以下为_Block_object_assign函数的部分代码:

if ((flags & BLOCK_BYREF_CALLER) == BLOCK_BYREF_CALLER) {
...
else {
// do *not* retain or *copy* __block variables whatever they are
_Block_assign((void *)object, destAddr);
}
}

_Block_byref_assign_copy函数的以下代码会对上面的辅助函数__Block_byref_id_object_copy_131进行调用;570425344表示BLOCK_HAS_COPY_DISPOSE | BLOCK_HAS_DESCRIPTOR,即(1<<25 | 1<<29),_Block_byref_assign_copy函数的部分代码:

if (src->flags & BLOCK_HAS_COPY_DISPOSE) {
// Trust copy helper to copy everything of interest
// If more than one field shows up in a byref block this is wrong XXX
copy->byref_keep = src->byref_keep;
copy->byref_destroy = src->byref_destroy;
(*src->byref_keep)(copy, src);
}

四、ARC中block的工作特点

ARC模式下,在栈间传递block时,不需要手动copy栈中的block,即可让block正常工作。主要原因是ARC对栈中的block自动执行了copy,将_NSConcreteStackBlock类型的block转换成了_NSConcreteMallocBlock类型的block

1. block,非函数参数

代码:

	int i = 10;
void (^block)() = ^{i;}; __unsafe_unretained void (^weakBlock)() = ^{i;}; void (^stackBlock)() = ^{}; NSLog(@"%@", ^{i;}); NSLog(@"%@", block); NSLog(@"%@", weakBlock); NSLog(@"%@", stackBlock); /* ARC
<__NSStackBlock__: 0x7fff5fbff708>
<__NSMallocBlock__: 0x100300000>
<__NSStackBlock__: 0x7fff5fbff738>
<__NSGlobalBlock__: 0x100001110>
*/ /* MRC
<__NSStackBlock__: 0x7fff5fbff6e0>
<__NSStackBlock__: 0x7fff5fbff740>
<__NSStackBlock__: 0x7fff5fbff710>
<__NSGlobalBlock__: 0x1000010e0>*/

从打印结果可以看出,ARC模式下,block 只有引用了外部的变量,并且被强引用,才会被拷贝到堆上;只引用了外部的变量,或者被弱引用都只在栈上创建;如果没有引用外部变量,无论是否被强引用,都会被转换为全局 block,也就是说,在编译时,这个block的所有内容已经在代码段中生成了。

2. block,作为参数传递

代码

typedef void (^Block)();

NSMutableArray *arrays;

void testBlock() {
int a = 5; [arrays addObject:^{
NSLog(@"%d", a);
}];
} int main(int argc, const char * argv[]) {
@autoreleasepool {
// insert code here.. arrays = @[].mutableCopy; testBlock(); Block block = [arrays firstObject]; NSLog(@"%@", block); /* ARC
* <__NSMallocBlock__: 0x1006034c0>
*/ /* MRC
* 崩溃,野指针
*/
}
return 0;
}

可以看出,ARC模式下,栈区的block 被拷贝到了堆区,在 testBlock 函数结束后依然可以访问;而 MRC模式下,由于我们没有手动执行[block copy]来将block拷贝到堆区,随着函数生命周期结束,block被销毁,访问时出现野指针错误,但是如果把testBlock函数中的block打印语句删掉:

NSLog(@"%d", a);

那么,block就变为全局的,在MRC模式下,再次访问不会出错。


参考文章

http://www.jianshu.com/p/51d04b7639f1

http://www.jianshu.com/p/aff2cad778c0

http://www.galloway.me.uk/2013/05/a-look-inside-blocks-episode-3-block-copy/

runtime.c

Block.private.h

iOS - Block底层解析的更多相关文章

  1. 【iOS 单例设计模式】底层解析与运用

    [iOS 单例设计模式]底层解析与运用 一.单例设计名词解释: (官方解释)单例模式确保一个类只有一个实例,自行提供这个实例并向整个系统提供这个实例.(形象比喻)程序 — 公司   单例实例 - 管理 ...

  2. iOS 技术篇:从使用到了解block底层原理 (二)

    block实质 序言 上篇文章中主要通过简单的demo展示了block的使用场景,本篇将基于上篇文章iOS 技术篇:从使用到了解block底层原理 (一)进一步了解block底层的实现原理. bloc ...

  3. iOS OC语言: Block底层实现原理

    先来简单介绍一下BlockBlock是什么?苹果推荐的类型,效率高,在运行中保存代码.用来封装和保存代码,有点像函数,Block可以在任何时候执行. Block和函数的相似性:(1)可以保存代码(2) ...

  4. iOS block 的底层实现

    其实swift 的闭包跟 OC的block 是一样一样的,学会了block,你swift里边的闭包就会无师自通. 参考:http://www.jianshu.com/p/e23078c11518 ht ...

  5. iOS OC语言: Block底层实现原理 (转载)

    作者:Liwjing 地址:http://www.jianshu.com/users/8df89a9d8380/latest_articles 先来简单介绍一下Block Block是什么? 苹果推荐 ...

  6. 【iOS系列】-iOS的多线程解析

    [iOS系列]-iOS的多线程解析 iOS的多线程实现技术: 1:GCD -- Grand Central Dispatch 是基于C语言的底层API 用Block定义任务,使用起来非常灵活便捷 提供 ...

  7. iOS Block界面反向传值

    在上篇博客 <iOS Block简介> 中,侧重解析了 iOS Block的概念等,本文将侧重于它们在开发中的应用. Block是iOS4.0+ 和Mac OS X 10.6+ 引进的对C ...

  8. iOS block从零开始

    iOS block从零开始 在iOS4.0之后,block横空出世,它本身封装了一段代码并将这段代码当做变量,通过block()的方式进行回调. block的结构 先来一段简单的代码看看: void ...

  9. iOS block的用法

    本章学习目标: 1. 了解何谓block. 2. 了解block的使用方法. Block 是iOS在4.0之后新增的程式语法,严格来说block的概念并不算是基础程式设计的范围,对初学者来说也不是很容 ...

随机推荐

  1. jsp注册页面的省份联动(网上copy别人的,然后自己弄了一下才知道怎么用)

    首先写一个js里面是所有的省份一些七七八八的东西,直接复制黏贴过去就好了. var addressInit = function(_cmbProvince, _cmbCity, _cmbArea, d ...

  2. Luogu T7152 细胞(递推,矩阵乘法,快速幂)

    Luogu T7152 细胞(递推,矩阵乘法,快速幂) Description 小 X 在上完生物课后对细胞的分裂产生了浓厚的兴趣.于是他决定做实验并 观察细胞分裂的规律. 他选取了一种特别的细胞,每 ...

  3. ps_cc切片

    web前端开发的工作流程的第一步就是根据ui给的psd来还原设计图样貌. 可是一打开满屏的参考线.这时我们可以alt+v+d清空参考线 这时可以按alt+鼠标拖放图片.同时也可以按F进入半屏和匀速连按 ...

  4. ES6速记手册

    1.三元操作符 这是一个很好的节省代码当你想要编写一个如果. . else语句在一线. 普通写法: const x = 20;let big;if (x > 10) { 速记: const bi ...

  5. Abp(.NetCore)开发与发布过程

    .NetCore 项目开发正当火热,ABP也推出了.NetCore的版本.趁此机会学习.NetCore的开发与发布过程.以下是本人的踩坑经验. 在ABP官网提供单页面应用开发框架(AngularJs) ...

  6. python之总体理解

    作为脚本,python具备了弱类型语言的灵活性,便捷性.这在日常的开发使用中能够大幅度的减轻开发人员的编码负担,开发者也能够将精力集中在程序的逻辑管理和总体构架设计上.一般而言,随着经验的积累,开发人 ...

  7. 自家服务器防止DDoS攻击的简单方法

    DDoS攻击并不是新技术,该攻击方式最早可以追溯到1996年,2002年时在我国就已经开始频繁出现.在DDoS攻击发展的这十几年间,DDoS攻击也在不断变化.数据显示,最大规模的DDoS攻击峰值流量超 ...

  8. (转)Java里的堆(heap)栈(stack)和方法区(method)(精华帖,多读读)

    [color=red][/color]<一> 基础数据类型直接在栈空间分配, 方法的形式参数,直接在栈空间分配,当方法调用完成后从栈空间回收.   引用数据类型,需要用new来创建,既在栈 ...

  9. swift3.0 基础练习-构造对象并按要求进行排序(struct)

    struct练手 构造10个学生(要求有学生的姓名.数学成绩.英语成绩),按照学生英语和数学平均分的成绩从小到大输出学生的姓名.数学成绩.英语成绩及平均分 创建一个学生构造体,包含 姓名 name 数 ...

  10. HDOJ2007-平方和与立方和

    Problem Description 给定一段连续的整数,求出他们中所有偶数的平方和以及所有奇数的立方和.   Input 输入数据包含多组测试实例,每组测试实例包含一行,由两个整数m和n组成.   ...