UVA - 11082 Matrix Decompressing(最大流+行列模型)
题目大意:给出一个R行C列的矩阵,如今给出他的前1-R行和 && 前1-C列和,问这个矩阵原来是如何的,要求每一个元素大小在1-20之间
解题思路:将每一行连接到超级源点,容量为该行的和-列数
将每一列连接到超级汇点,容量为该列的和-行数
接着将每行连接到该行的每一个元素,容量为19
将每一个元素连接到元素所在列。容量为19
为什么容量为19,由于跑最大流的时候有可能边的流量为0,而他要求的是每一个数的范围在1-20之间,所以最后的答案都要加上1。这也解释了为什么连接到超级源点和超级汇点的容量要减去对应的值
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
#define N 1010
#define INF 0x3f3f3f3f
struct Edge{
int from, to, cap, flow;
Edge() {}
Edge(int from, int to, int cap, int flow) : from(from), to(to), cap(cap), flow(flow) {}
};
struct Dinic{
int n, m, s, t;
vector<Edge> edges;
vector<int> G[N];
bool vis[N];
int d[N], cur[N];
void init(int n) {
this->n = n;
for (int i = 0; i <= n; i++) {
G[i].clear();
}
edges.clear();
}
void AddEdge(int from, int to, int cap) {
edges.push_back(Edge(from, to, cap, 0));
edges.push_back(Edge(to, from, 0, 0));
int m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
bool BFS() {
memset(vis, 0, sizeof(vis));
queue<int> Q;
Q.push(s);
vis[s] = 1;
d[s] = 0;
while (!Q.empty()) {
int u = Q.front();
Q.pop();
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (!vis[e.to] && e.cap > e.flow) {
vis[e.to] = true;
d[e.to] = d[u] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x, int a) {
if (x == t || a == 0)
return a;
int flow = 0, f;
for (int i = cur[x]; i < G[x].size(); i++) {
Edge &e = edges[G[x][i]];
if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0) {
e.flow += f;
edges[G[x][i] ^ 1].flow -= f;
flow += f;
a -= f;
if (a == 0)
break;
}
}
return flow;
}
int Maxflow(int s, int t) {
this->s = s; this->t = t;
int flow = 0;
while (BFS()) {
memset(cur, 0, sizeof(cur));
flow += DFS(s, INF);
}
return flow;
}
};
Dinic dinic;
int n, m, cas = 1;
int SumRow[N], SumCol[N], row[N], col[N];
void init() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++)
scanf("%d", &SumRow[i]);
for (int i = 1; i <= m; i++)
scanf("%d", &SumCol[i]);
int source = 0, sink = n * m + n + m + 1;
dinic.init(sink);
row[1] = SumRow[1];
dinic.AddEdge(source, n * m + 1, row[1] - m);
for (int i = 2; i <= n; i++) {
row[i] = SumRow[i] - SumRow[i - 1];
dinic.AddEdge(source, n * m + i, row[i] - m);
}
col[1] = SumCol[1];
dinic.AddEdge(n * m + n + 1, sink, SumCol[1] - n);
for (int i = 2; i <= m; i++) {
col[i] = SumCol[i] - SumCol[i - 1];
dinic.AddEdge(n * m + n + i, sink, col[i] - n);
}
for (int i = 0; i < n; i++)
for (int j = 1; j <= m; j++) {
dinic.AddEdge(n * m + i + 1, i * m + j, 19);
dinic.AddEdge(i * m + j, n * m + n + j, 19);
}
int ans = dinic.Maxflow(source, sink);
printf("Matrix %d\n", cas++);
for (int i = 0; i < n; i++) {
for (int j = 1; j <= m; j++) {
if (j != 1)
printf(" ");
for (int k = 0; k < dinic.G[i*m+j].size(); k++) {
int u = dinic.edges[dinic.G[i*m+j][k]].from;
int v = dinic.edges[dinic.G[i*m+j][k]].to;
if (u == i * m + j && v == n * m + n + j) {
printf("%d", dinic.edges[dinic.G[i*m+j][k]].flow + 1);
break;
}
}
}
printf("\n");
}
}
int main() {
int test;
scanf("%d", &test);
while (test--) {
init();
if (test)
printf("\n");
}
return 0;
}
UVA - 11082 Matrix Decompressing(最大流+行列模型)的更多相关文章
- UVa 11082 Matrix Decompressing(最大流)
不想吐槽了..sample input 和sample output 完全对不上...调了一个晚上...不想说什么了... -------------------------------------- ...
- UVA - 11082 Matrix Decompressing
2. B - Matrix Decompressing 题意:定义一个R*C的正整数矩阵(1<=R,C<=20),设Ai为前i行所有元素之和,Bi为前i列所有元素之和. 题目已知R,C和数 ...
- UVA 11082 Matrix Decompressing 矩阵解压(最大流,经典)
题意: 知道矩阵的前i行之和,和前j列之和(任意i和j都可以).求这个矩阵.每个格子中的元素必须在1~20之间.矩阵大小上限20*20. 思路: 这么也想不到用网络流解决,这个模型很不错.假设这个矩阵 ...
- UVa 11082 - Matrix Decompressing(最大流)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA - 11082 Matrix Decompressing (最大流,技巧)
很经典的网络流模型,行编号和列编号分别看成一个点,行和列和分别看出容量,一个点(x,y)看出是一条边,边的容量下界是1,所以先减去1,之后在加上就好了. 建图的时候注意分配好编号,解从残留网络中的边找 ...
- uva 11082 Matrix Decompressing 【 最大流 】
只看题目的话~~怎么也看不出来是网络流的题目的说啊~~~~ 建图好神奇~~ 最开始不懂---后来看了一下这篇-- http://www.cnblogs.com/AOQNRMGYXLMV/p/42807 ...
- [题解]UVa 11082 Matrix Decompressing
开始眨眼一看怎么也不像是网络流的一道题,再怎么看也觉得像是搜索.不过虽然这道题数据范围很小,但也不至于搜索也是可以随随便便就可以过的.(不过这道题应该是special judge,因为一题可以多解而且 ...
- UVa 11082 Matrix Decompressing - 网络流
开始眨眼一看怎么也不像是网络流的一道题,再怎么看也觉得像是搜索.不过虽然这道题数据范围很小,但也不至于搜索也是可以随随便便就可以过的.(不过这道题应该是special judge,因为一题可以多解而且 ...
- UVA11082 Matrix Decompressing 最大流建模解矩阵,经典
/** 题目:UVA11082 Matrix Decompressing 链接:https://vjudge.net/problem/UVA-11082 题意:lrj入门经典P374 已知一个矩阵的行 ...
随机推荐
- SQL基本查询_多表查询(实验三)
SQL基本查询_多表查询(实验三) 题目要求(一) 针对emp.dept两表完成如下查询,并验证查询结果的正确性 使用显式内连接查询所有员工的信息,显示其编号.姓名.薪水.入职日期及部门名称: 使用隐 ...
- ASP.NET Core中的OWASP Top 10 十大风险-失效的访问控制与Session管理
不定时更新翻译系列,此系列更新毫无时间规律,文笔菜翻译菜求各位看官老爷们轻喷,如觉得我翻译有问题请挪步原博客地址 本博文翻译自: https://dotnetcoretutorials.com/201 ...
- phpstudy APACHE支持.htaccess以及 No input file specified解决方案
APACHE支持.htaccess以及 No input file specified解决方案 你的Apache安装文件夹conf里找到httpd.conf文件 索LoadModule rewrite ...
- iOS内置图片瘦身思路整理
一.前言 前段时间注意到我们APP的包大小超过100MB了,所以随口跟老板说了下能否采用字体文件(.ttf)替代PNG图片,老板对应用瘦身很感兴趣因此让我做下技术调研.这篇文章主要是将我们的各个技术方 ...
- Navi.Soft31.产品.登录器(永久免费)
1系统简介 1.1功能简述 电商平台和传统店铺相比,确实方便不少,直接在网上下单,快递直接送货到家.这其中,做电商平台的童鞋表示压力很大,因为可能同时开很多店铺,每个店铺都要登录.查看订单量.发货拣货 ...
- [转载] 基于Dubbo框架构建分布式服务
转载自http://shiyanjun.cn/archives/1075.html Dubbo是Alibaba开源的分布式服务框架,我们可以非常容易地通过Dubbo来构建分布式服务,并根据自己实际业务 ...
- Liunx文件解压与压缩
文件压缩和解压缩 常见压缩格式如下 .zip .gz .bz2 .tar.gz .tar.gz2 .zip压缩 zip 压缩文件名 源文件 压缩文件 zip -r(递归) 压缩文件名 源目录 压缩目录 ...
- SpringMVC RequestMapping 详解
SpringMVC RequestMapping 详解 RequestMapping这个注解在SpringMVC扮演着非常重要的角色,可以说是随处可见.它的知识点很简单.今天我们就一起学习Spring ...
- 5分钟搞定iOS抓包Charles,让数据一清二楚
Charles安装 HTTP抓包 HTTPS抓包 1. Charles安装 官网下载安装Charles:https://www.charlesproxy.com/download/ 2. HTTP ...
- 一位有着工匠精神的博主写的关于IEnumerable接口的详细解析
在此,推荐一位有着工匠精神的博主写的一篇关于IEnumerable接口的深入解析的文章:http://www.cnblogs.com/zhaopei/p/5769782.html#autoid-0-0 ...