UVA - 11082 Matrix Decompressing(最大流+行列模型)
题目大意:给出一个R行C列的矩阵,如今给出他的前1-R行和 && 前1-C列和,问这个矩阵原来是如何的,要求每一个元素大小在1-20之间
解题思路:将每一行连接到超级源点,容量为该行的和-列数
将每一列连接到超级汇点,容量为该列的和-行数
接着将每行连接到该行的每一个元素,容量为19
将每一个元素连接到元素所在列。容量为19
为什么容量为19,由于跑最大流的时候有可能边的流量为0,而他要求的是每一个数的范围在1-20之间,所以最后的答案都要加上1。这也解释了为什么连接到超级源点和超级汇点的容量要减去对应的值
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
#define N 1010
#define INF 0x3f3f3f3f
struct Edge{
int from, to, cap, flow;
Edge() {}
Edge(int from, int to, int cap, int flow) : from(from), to(to), cap(cap), flow(flow) {}
};
struct Dinic{
int n, m, s, t;
vector<Edge> edges;
vector<int> G[N];
bool vis[N];
int d[N], cur[N];
void init(int n) {
this->n = n;
for (int i = 0; i <= n; i++) {
G[i].clear();
}
edges.clear();
}
void AddEdge(int from, int to, int cap) {
edges.push_back(Edge(from, to, cap, 0));
edges.push_back(Edge(to, from, 0, 0));
int m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
bool BFS() {
memset(vis, 0, sizeof(vis));
queue<int> Q;
Q.push(s);
vis[s] = 1;
d[s] = 0;
while (!Q.empty()) {
int u = Q.front();
Q.pop();
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (!vis[e.to] && e.cap > e.flow) {
vis[e.to] = true;
d[e.to] = d[u] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x, int a) {
if (x == t || a == 0)
return a;
int flow = 0, f;
for (int i = cur[x]; i < G[x].size(); i++) {
Edge &e = edges[G[x][i]];
if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0) {
e.flow += f;
edges[G[x][i] ^ 1].flow -= f;
flow += f;
a -= f;
if (a == 0)
break;
}
}
return flow;
}
int Maxflow(int s, int t) {
this->s = s; this->t = t;
int flow = 0;
while (BFS()) {
memset(cur, 0, sizeof(cur));
flow += DFS(s, INF);
}
return flow;
}
};
Dinic dinic;
int n, m, cas = 1;
int SumRow[N], SumCol[N], row[N], col[N];
void init() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++)
scanf("%d", &SumRow[i]);
for (int i = 1; i <= m; i++)
scanf("%d", &SumCol[i]);
int source = 0, sink = n * m + n + m + 1;
dinic.init(sink);
row[1] = SumRow[1];
dinic.AddEdge(source, n * m + 1, row[1] - m);
for (int i = 2; i <= n; i++) {
row[i] = SumRow[i] - SumRow[i - 1];
dinic.AddEdge(source, n * m + i, row[i] - m);
}
col[1] = SumCol[1];
dinic.AddEdge(n * m + n + 1, sink, SumCol[1] - n);
for (int i = 2; i <= m; i++) {
col[i] = SumCol[i] - SumCol[i - 1];
dinic.AddEdge(n * m + n + i, sink, col[i] - n);
}
for (int i = 0; i < n; i++)
for (int j = 1; j <= m; j++) {
dinic.AddEdge(n * m + i + 1, i * m + j, 19);
dinic.AddEdge(i * m + j, n * m + n + j, 19);
}
int ans = dinic.Maxflow(source, sink);
printf("Matrix %d\n", cas++);
for (int i = 0; i < n; i++) {
for (int j = 1; j <= m; j++) {
if (j != 1)
printf(" ");
for (int k = 0; k < dinic.G[i*m+j].size(); k++) {
int u = dinic.edges[dinic.G[i*m+j][k]].from;
int v = dinic.edges[dinic.G[i*m+j][k]].to;
if (u == i * m + j && v == n * m + n + j) {
printf("%d", dinic.edges[dinic.G[i*m+j][k]].flow + 1);
break;
}
}
}
printf("\n");
}
}
int main() {
int test;
scanf("%d", &test);
while (test--) {
init();
if (test)
printf("\n");
}
return 0;
}
UVA - 11082 Matrix Decompressing(最大流+行列模型)的更多相关文章
- UVa 11082 Matrix Decompressing(最大流)
不想吐槽了..sample input 和sample output 完全对不上...调了一个晚上...不想说什么了... -------------------------------------- ...
- UVA - 11082 Matrix Decompressing
2. B - Matrix Decompressing 题意:定义一个R*C的正整数矩阵(1<=R,C<=20),设Ai为前i行所有元素之和,Bi为前i列所有元素之和. 题目已知R,C和数 ...
- UVA 11082 Matrix Decompressing 矩阵解压(最大流,经典)
题意: 知道矩阵的前i行之和,和前j列之和(任意i和j都可以).求这个矩阵.每个格子中的元素必须在1~20之间.矩阵大小上限20*20. 思路: 这么也想不到用网络流解决,这个模型很不错.假设这个矩阵 ...
- UVa 11082 - Matrix Decompressing(最大流)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA - 11082 Matrix Decompressing (最大流,技巧)
很经典的网络流模型,行编号和列编号分别看成一个点,行和列和分别看出容量,一个点(x,y)看出是一条边,边的容量下界是1,所以先减去1,之后在加上就好了. 建图的时候注意分配好编号,解从残留网络中的边找 ...
- uva 11082 Matrix Decompressing 【 最大流 】
只看题目的话~~怎么也看不出来是网络流的题目的说啊~~~~ 建图好神奇~~ 最开始不懂---后来看了一下这篇-- http://www.cnblogs.com/AOQNRMGYXLMV/p/42807 ...
- [题解]UVa 11082 Matrix Decompressing
开始眨眼一看怎么也不像是网络流的一道题,再怎么看也觉得像是搜索.不过虽然这道题数据范围很小,但也不至于搜索也是可以随随便便就可以过的.(不过这道题应该是special judge,因为一题可以多解而且 ...
- UVa 11082 Matrix Decompressing - 网络流
开始眨眼一看怎么也不像是网络流的一道题,再怎么看也觉得像是搜索.不过虽然这道题数据范围很小,但也不至于搜索也是可以随随便便就可以过的.(不过这道题应该是special judge,因为一题可以多解而且 ...
- UVA11082 Matrix Decompressing 最大流建模解矩阵,经典
/** 题目:UVA11082 Matrix Decompressing 链接:https://vjudge.net/problem/UVA-11082 题意:lrj入门经典P374 已知一个矩阵的行 ...
随机推荐
- display、visibility、visible区别
标签的隐藏可以有三种:display.visibility.服务器控件的visible. 显然,这三者都能起到隐藏与显示的效果,但是用途确完全不一样,请看用法与区别: <div style=&q ...
- Vue Elementui 如何让输入框每次自动聚焦
在项目优化中碰到一个小问题,在每次提示框显示的时候让提示框中的输入框聚焦.如下图.一般情况下提示框是隐藏的.点击了编辑才会弹出. 那么原生属性autofocus 只在模板加载完成时起作用,也就是说只有 ...
- nodeCZBK-笔记1
[TOC] ****************************** day01 node简介 Node.js是一个让JavaScript运行在服务器端的开发平台. node就是一个js的执行环境 ...
- ContextLoaderListener - 运行原理
基本概念: servletContext:http://blog.csdn.net/yjw757174266/article/details/45072975 1. 使用ContextLoaderL ...
- 《Python数据分析常用手册》一、NumPy和Pandas篇
一.常用链接: 1.Python官网:https://www.python.org/ 2.各种库的whl离线安装包:http://www.lfd.uci.edu/~gohlke/pythonlibs/ ...
- linux操作系统基础篇(四)
一.系统监控 1.TOP 命令 1) top命令的功能:top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器. 2) 使用top命令列 ...
- linux操作系统基础篇(二)
Linux用户.群组.权限 1.用户也是由一个个文件组成的下列文件都是存放用户信息的文件 useradd user1 /etc/passwd: 存放用户信息 /etc/shadow/ :存放用户密码 ...
- numpy初识
1,机器学习numpy 初识 1)numpy初识 import numpy num1= numpy.array([1,2,3]) dtype('num1') #查找类型 num1.dtype num1 ...
- [C#源代码]使用SCPI指令对指定通信端口(RS232/USB/GPIB/LAN)的仪器编程
本文为原创文章,源代码为原创代码,如转载/复制,请在网页明显位置标明原文名称.作者及网址,谢谢! 本软件是基于NI-VISA/VISA32(Virtual Instrument Software Ar ...
- 使用Recovery Services备份文件及文件夹
1.创建恢复服务保管库 2.在backup项中选择本地,备份文件和文件夹选项 3.根据提示下载Agent及保管库凭据 4.在文件服务器上安装Agent 5.选择"继续注册"项,并添 ...