cs231n spring 2017 lecture9 CNN Architectures 听课笔记
参考《deeplearning.ai 卷积神经网络 Week 2 听课笔记》。
1. AlexNet(Krizhevsky et al. 2012),8层网络。
学会计算每一层的输出的shape:对于卷积层,输出的边长 =(输入的边长 - filter的边长)/ 步长 + 1,输出的通道数等于filter的数量。每个filter的通道数等于输入的通道数。卷积层的参数 = filter的长 * filter的宽 * 输入的通道数 * filter的数量。池化层没有需要学习的参数。
图中分成两个通道是为了在不同GPU上处理。
2013年的ZFNet延续了AlexNet的架构(也是8层网络),优化了参数,取得了更好的效果(错误率从16.4%降到11.7%)。
2. VGGNet(Simonyan and Zisserman, 2014),16~19层网络。
三个3*3的filter串联等价于一个7*7的filter,用更小的filter的好处是增加了网络的深度,增加了非线性程度,更少的参数。
3. GoogLeNet(Szegedy et al., 2014)
Inception module是同时用不同的filter(1*1,3*3,5*5,Pooling),并把结果堆叠起来。这样做的缺点是计算量变大。解决的办法是先用1*1的卷积压缩通道数量(参考《deeplearning.ai 卷积神经网络 Week 2 听课笔记》)。
4. ResNet(He et al., 2015),152层网络。
解决了很深的网络难优化的问题。
对于深度的网络(ResNet-50+),类似GoogLeNet用1*1的卷积层去压缩通道数以提高效率。
5. 复杂度的比较
6. 其他一些网络
Network in Network (NiN)(Lin et al., 2014):启发了GoogLeNet和ResNet的“bottleneck”层(1*1卷积层)。
Identity Mappings in Deep Residual Networks (He et al., 2016):ResNet的改进。
Wide Residual Networks (Zagoruyko et al., 2016):认为residuals是很重要的,而不是深度。增加宽度而不是深度,会计算更有效。50层的宽的ResNet比152层的原始的ResNet更好。
ResNeXt (Xie et al., 2016):也是增加宽度,和Inception module很类似的想法。
Deep Networks with Stochastic Depth (Huang et al., 2016):为了解决梯度消失的问题,随机地drop掉一些层。在测试阶段使用全部的网络,不drop任何层。
FractalNet (Larsson et al., 2017):认为residual不是必须的,重要的是浅层到深层的有效传递(transitioning),训练阶段也是随机drop掉一些层,测试阶段不drop任何层。
Densely Connected Convolutional Networks (Huang et al., 2017):为了解决梯度消失的问题,每一层与其他层更稠密的连接。
SqueezeNet (Landola et al., 2017):更少的参数,更好的准确度。
7. 总结
VGG、GoogLeNet、ResNet被广泛应用,现在已经是集成到各个现成框架。
ResNet是当今最佳,默认选项。
趋势是越来越深的网络。
很多研究集中在设计层与层之间的连接方式,为了改善梯度的传播。
最新的研究在争论深度和宽度,以及residual的必要性。
cs231n spring 2017 lecture9 CNN Architectures 听课笔记的更多相关文章
- cs231n spring 2017 lecture9 CNN Architectures
参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...
- cs231n spring 2017 lecture13 Generative Models 听课笔记
1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...
- cs231n spring 2017 lecture14 Reinforcement Learning 听课笔记
(没太听明白,下次重新听) 1. 增强学习 有一个 Agent 和 Environment 交互.在 t 时刻,Agent 获知状态是 st,做出动作是 at:Environment 一方面给出 Re ...
- cs231n spring 2017 lecture2 Image Classification 听课笔记
1. 相比于传统的人工提取特征(边.角等),深度学习是一种Data-Driven Approach.深度学习有统一的框架,喂不同的数据集,可以训练识别不同的物体.而人工提取特征的方式很脆弱,换一个物体 ...
- cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记
1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...
- cs231n spring 2017 lecture11 Detection and Segmentation 听课笔记
1. Semantic Segmentation 把每个像素分类到某个语义. 为了减少运算量,会先降采样再升采样.降采样一般用池化层,升采样有各种"Unpooling"." ...
- cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training 听课笔记
(没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比 ...
- cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning 听课笔记
1. 深度学习面临的问题: 1)模型越来越大,很难在移动端部署,也很难网络更新. 2)训练时间越来越长,限制了研究人员的产量. 3)耗能太多,硬件成本昂贵. 解决的方法:联合设计算法和硬件. 计算硬件 ...
- cs231n spring 2017 lecture12 Visualizing and Understanding 听课笔记
这一节课很零碎. 1. 神经网络到底在干嘛? 浅层的是具体的特征(比如边.角.色块等),高层的更抽象,最后的全连接层是把图片编码成一维向量然后和每一类标签作比较.如果直接把图片和标签做像素级的最近领域 ...
随机推荐
- MySQL学习(二)复制
复制解决的问题是保持多个服务器之间的数据的一致性,就如同通过复制保持两个文件的一致性一样,只不过MySQL的复制要相对要复杂一些,其基本过程如下: 1)在主库上将数据更改记录到二进制日 ...
- Android开发——diglog cancel与dismiss方法区别
AlertDialog dismiss 和 cancel方法的区别 AlertDialog使用很方便,但是有一个问题就是:dismiss方法和cancel方法到底有什么不同? 今天有时间,看了看源 ...
- 7.python常用模块
1.time 常用表示时间方式: 时间戳,格式化的时间字符串,元组(struct_time) UTC(Coordinated Universal Time,世界协调时)亦即格林威治天文时间,世界标准时 ...
- ES6之Set方法与Map方法
ES6提供了新的数据结构--Set与Map,Set本身是一个构造函数且成员的值是唯一的,没有重复的值!!!Set()是一个存储已排序的无重复元素的数据而Map()是一对数据Map()使用关键值Key来 ...
- iOS UI特效
1.iOS特效 a.对应APP中的基本动作分三类: 1.指向性动效(滑动,弹出等) 2.提示性动效(滑动删除,下拉刷新等) 3.空间扩展(翻动,放大等) b.这类动效在设计过程中需要主意几点: 1.系 ...
- iOS APP之间到跳转,以及热门应用,手机自带到应用跳转
应用之间的跳转 在第一个APP中,做如下操作:1.在info.plist文件中的"信息属性列表"下添加一项:"URL类型"; 2.点开"URL类型&q ...
- Mac shell笔记
用来自动执行一些前端发布的操作. 脚本: # webReleasePath用来发布的目录,webRevisionPath是开发的目录 webReleasePath='/Users/lufeng/Doc ...
- Xamarin android使用Sqlite做本地存储数据库
android使用Sqlite做本地存储非常常见(打个比方就像是浏览器要做本地存储使用LocalStorage,貌似不是很恰当,大概就是这个意思). SQLite 是一个软件库,实现了自给自足的.无服 ...
- Python学习(三):迭代器、生成器、装饰器、递归、算法、正则
1.迭代器 迭代器是访问集合的一种方式,迭代对象从集合的第一个元素开始访问,直到元素被访问结束,迭代器只能往前不能后退,最大的优点是不要求事先准备好整个迭代过程中的元素,这个特点使得它特别适合用于遍历 ...
- Kettle中忽略错误行继续执行
在kettle执行的过程中,如果遇到错误,kettle会停止运行.在某些时候,并不希望kettle停止运行,所以就要处理下这些错误行. 例如这两天发现在一个转换中,总数出现一些不规则数据,这些数据一出 ...