云端TensorFlow读取数据IO的高效方式
低效的IO方式
最近通过观察PAI平台上TensoFlow用户的运行情况,发现大家在数据IO这方面还是有比较大的困惑,主要是因为很多同学没有很好的理解本地执行TensorFlow代码和分布式云端执行TensorFlow的区别。本地读取数据是server端直接从client端获得graph进行计算,而云端服务server在获得graph之后还需要将计算下发到各个worker处理(具体原理可以参考视频教程-Tensorflow高级篇:https://tianchi.aliyun.com/competition/new_articleDetail.html)。 
本文通过读取一个简单的CSV文件为例,帮助大家快速了解如何使用TensorFlow高效的读取数据。CSV文件如下:
1,1,1,1,1
2,2,2,2,2
3,3,3,3,3
首先我们来看下大家容易产生问题的几个地方。
1.不建议用python本地读取文件的方式
PAI支持Python的自带IO方式,但是需要将数据源和代码打包上传的方式使用,这种读取方式是将数据写入内存之后再计算,效率比较低,不建议使用。范例代码如下:
import csv
csv_reader=csv.reader(open('csvtest.csv'))
for row in csv_reader:
print(row)
2.尽量不要用第三方库的读取文件方法
很多同学使用第三方库的一些数据IO的方式进行数据读取,比如TFLearn、Panda的数据IO方式,这些方法很多都是通过封装python的读取方式实现的,所以在PAI平台使用的时候也会造成效率低下问题。
3.尽量不要用preload的方式读取文件
很多人在用PAI的服务的时候表示GPU并没有比本地的CPU速度快的明显,主要问题可能就出在数据IO这块。preload的方式是先把数据全部都读到内存中,然后再通过session计算,比如feed的读取方式。这样要先进行数据读取,再计算,不同步造成性能浪费,同时因为内存限制也无法支持大数据量的计算。举个例子:假设我们的硬盘中有一个图片数据集0001.jpg,0002.jpg,0003.jpg……我们只需要把它们读取到内存中,然后提供给GPU或是CPU进行计算就可以了。这听起来很容易,但事实远没有那么简单。事实上,我们必须要把数据先读入后才能进行计算,假设读入用时0.1s,计算用时0.9s,那么就意味着每过1s,GPU都会有0.1s无事可做,这就大大降低了运算的效率。 
下面我们看下高效的读取方式。
高效的IO方式
高效的TensorFlow读取方式是将数据读取转换成OP,通过session run的方式拉去数据。另外,读取线程源源不断地将文件系统中的图片读入到一个内存的队列中,而负责计算的是另一个线程,计算需要数据时,直接从内存队列中取就可以了。这样就可以解决GPU因为IO而空闲的问题!

下面我们看下代码,如何在PAI平台通过OP的方式读取数据:
import argparse
import tensorflow as tf
import os
FLAGS=None
def main(_):
dirname = os.path.join(FLAGS.buckets, "csvtest.csv")
reader=tf.TextLineReader()
filename_queue=tf.train.string_input_producer([dirname])
key,value=reader.read(filename_queue)
record_defaults=[[''],[''],[''],[''],['']]
d1, d2, d3, d4, d5= tf.decode_csv(value, record_defaults, ',')
init=tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess,coord=coord)
for i in range(4):
print(sess.run(d2))
coord.request_stop()
coord.join(threads)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--buckets', type=str, default='',
help='input data path')
parser.add_argument('--checkpointDir', type=str, default='',
help='output model path')
FLAGS, _ = parser.parse_known_args()
tf.app.run(main=main)
- dirname:OSS文件路径,可以是数组,方便下一阶段shuffle
- reader:TF内置各种reader API,可以根据需求选用
- tf.train.string_input_producer:将文件生成队列
- tf.decode_csv:是一个splite功能的OP,可以拿到每一行的特定参数
- 通过OP获取数据,在session中需要tf.train.Coordinator()和tf.train.start_queue_runners(sess=sess,coord=coord)
在代码中,我们的输入是3行5个字段:
1,1,1,1,1
2,2,2,2,2
3,3,3,3,3
我们循环输出4次,打印出第2个字段。结果如图:

输出结果也证明了数据结构是成队列。
其它
PAI notebook功能上线,支持在线修改代码并且内置各种深度学习框架,欢迎使用:https://data.aliyun.com/product/learn
- 强烈推荐视频教程:https://tianchi.aliyun.com/competition/new_articleDetail.html
- 本文参考了互联网上《十图详解TensorFlow数据读取机制(附代码)》一文,关于图片的读取方式也可以参考这篇文章,感谢原作者。
云端TensorFlow读取数据IO的高效方式的更多相关文章
- [置顶]
云端TensorFlow读取数据IO的高效方式
低效的IO方式 最近通过观察PAI平台上TensoFlow用户的运行情况,发现大家在数据IO这方面还是有比较大的困惑,主要是因为很多同学没有很好的理解本地执行TensorFlow代码和分布式云端执行T ...
- 第十二节,TensorFlow读取数据的几种方法以及队列的使用
TensorFlow程序读取数据一共有3种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据. 从文件读取数据: 在TensorFlow图的起 ...
- tensorflow读取数据的方式
转载:https://blog.csdn.net/u014038273/article/details/77989221 TensorFlow程序读取数据一共有四种方法(一般针对图像): 供给数据(F ...
- TensorFlow读取数据的三种方法
tensortlfow数据读取有三种方式 placehold feed_dict:从内存中读取数据,占位符填充数据 queue队列:从硬盘读取数据 Dataset:同时支持内存和硬盘读取数据 plac ...
- Tensorflow 载入数据的三种方式
Tensorflow 数据读取有三种方式: Preloaded data: 预加载数据 Feeding: Python产生数据,再把数据喂给后端. Reading from file: 从文件中直接读 ...
- tensorflow读取数据
线程和队列 在使用TensorFlow进行异步计算时,队列是一种强大的机制. 为了感受一下队列,让我们来看一个简单的例子.我们先创建一个“先入先出”的队列(FIFOQueue),并将其内部所有元素初始 ...
- Tensorflow高效读取数据
关于Tensorflow读取数据,官网给出了三种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据. 从文件读取数据: 在TensorFlow ...
- TensorFlow高效读取数据的方法——TFRecord的学习
关于TensorFlow读取数据,官网给出了三种方法: 供给数据(Feeding):在TensorFlow程序运行的每一步,让python代码来供给数据. 从文件读取数据:在TensorFlow图的起 ...
- Tensorflow高效读取数据的方法
最新上传的mcnn中有完整的数据读写示例,可以参考. 关于Tensorflow读取数据,官网给出了三种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码 ...
随机推荐
- 配置SSH无秘钥登录
[hadoop@hadoop01 ~]$ cd .ssh [hadoop@hadoop01 .ssh]$ ls authorized_keys id_rsa id_rsa.pub known_host ...
- C#基础:.NET环境下WebConfig的加密
在将ASP.NET项目部署到服务器上时,内网环境下Web.Config往往是直接复制过去.对于外网环境,则需要对Web.Config文件进行加密. .NET环境下一共提供了2种方式的加密功能,分别是D ...
- 使用Homebrew安装MySQL
安装命令: brew install mysql 安装完成之后,启动mysql: mysql.server start 发现无此命令: command not found 首先,检查是否是安装了.重新 ...
- Docker镜像构建的两种方式
关于Docker里面的几个主要概念 这里用个不太恰当的比方来说明. 大家肯定安装过ghost系统,镜像就像是ghost文件,容器就像是ghost系统.你可以拿别人的ghost文件安装系统(使用镜像运行 ...
- Ajax获取数据的几种格式和解析方式
一.什么是ajax AJAX的全称是Asynchronous JavaScript and XML(是异步的 javascript 和 XML). ajax不是新的编程语言,而是一种使用现有标准的 ...
- 集合用法笔记-Map用法
一.Map遍历 Map<String, String> map = new HashMap<String, String>(); map.put("1", ...
- 使用ajax方法实现form表单的提交(附源码)
写在前面的话 在使用form表单的时候,一旦点击提交触发submit事件,一般会使得页面跳转,页面间的跳转等行为的控制权往往在后端,后端会控制页面的跳转及数据传递,但是在某些时候不希望页面跳转,或者说 ...
- 如何开始使用bootstrap
登陆Bootstrap官网:http://getbootstrap.com/ Bootstrap中的JS插件依赖于jQuery,因此jQuery要在Bootstrap之前引用 bootstrap框架初 ...
- 【Splay】例题
营业额统计 题目背景 HNOI2002 DAY2 T2 题目描述 Tiger 最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger 拿出了公司 ...
- JavaScript Base64加解密
Base64加密算法是网络上最常见的用于传输8Bit字节代码的编码方式之一,大家可以查看RFC2045-RFC2049,上面有MIME的详细规范.Base64编码可用于在HTTP环境下传递较长的标识信 ...