Luogu 3390 【模板】矩阵快速幂 (矩阵乘法,快速幂)

Description

给定n*n的矩阵A,求A^k

Input

第一行,n,k

第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素

Output

输出A^k

共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7

Sample Input

2 1

1 1

1 1

Sample Output

1 1

1 1

Http

Luogu:https://www.luogu.org/problem/show?pid=3390

Source

矩阵乘法,快速幂

解决思路

关于矩阵和矩阵乘法的内容可以到我的这一篇博客查看。

这一题需要注意的就是初始矩阵的赋值,具体请看代码。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std; #define ll long long const int maxN=201;
const ll Mod=1000000007;
const ll inf=2147483647; int n; class Matrix
{
public:
ll M[maxN][maxN];
Matrix(int x)
{
for (int i=0;i<n;i++)
for (int j=0;j<n;j++)
M[i][j]=x;
}
Matrix(ll Arr[maxN][maxN])
{
for (int i=0;i<n;i++)
for (int j=0;j<n;j++)
M[i][j]=Arr[i][j];
}
void print()
{
for (int i=0;i<n;i++)
{
for (int j=0;j<n;j++)
cout<<M[i][j]<<' ';
cout<<endl;
}
}
}; Matrix operator * (Matrix A,Matrix B)
{
Matrix Ans(0);
for (int i=0;i<n;i++)
for (int j=0;j<n;j++)
for (int k=0;k<n;k++)
Ans.M[i][j]=(Ans.M[i][j]+A.M[i][k]*B.M[k][j]%Mod)%Mod;
return Ans;
} ll Arr[maxN][maxN]; ll read();
void Pow(ll Po); int main()
{
n=read();
ll Po=read();
for (int i=0;i<n;i++)
for (int j=0;j<n;j++)
Arr[i][j]=read();
Pow(Po-1);//注意,这里为什么要-1呢,因为我们知道a^1是a,对于矩阵来说就是A^1是A,所以在传进去的时候先-1(相当于已经进行了一次操作),而若Po==1,则在Pow(Po-1)中不会执行循环,此时也正好是矩阵A(仔细揣摩一下)
return 0;
} ll read()
{
ll x=0;
ll k=1;
char ch=getchar();
while (((ch>'9')||(ch<'0'))&&(ch!='-'))
ch=getchar();
if (ch=='-')
{
k=-1;
ch=getchar();
}
while ((ch>='0')&&(ch<='9'))
{
x=x*10+ch-48;
ch=getchar();
}
return x*k;
} void Pow(ll P)
{
Matrix A(Arr);
Matrix B(Arr);
while (P!=0)
{
if (P&1)
A=A*B;
B=B*B;
P=P>>1;
}
A.print();
return;
}

Luogu 3390 【模板】矩阵快速幂 (矩阵乘法,快速幂)的更多相关文章

  1. 乘方快速幂 OR 乘法快速幂

    关于快速幂这个算法,已经不想多说,很早也就会了这个算法,但是原来一直靠着模板云里雾里的,最近重新学习,发现忽视了一个重要的问题,就是若取模的数大于int型,即若为__int64的时候应该怎么办,这样就 ...

  2. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

  3. 整数快速乘法/快速幂+矩阵快速幂+Strassen算法

    快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c  二.矩 ...

  4. ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...

  5. 【bzoj4870】[Shoi2017]组合数问题 dp+快速幂/矩阵乘法

    题目描述 输入 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 输出 一行一个整数 ...

  6. codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数

    对于这道题目以及我的快速幂以及我的一节半晚自习我表示无力吐槽,, 首先矩阵乘法和快速幂没必要太多说吧,,嗯没必要,,我相信没必要,,实在做不出来写两个矩阵手推一下也就能理解矩阵的顺序了,要格外注意一些 ...

  7. Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)

    /* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...

  8. 快速幂&&矩阵快速幂

    快速幂 题目链接:https://www.luogu.org/problemnew/show/P1226 快速幂用了二分的思想,即将\(a^{b}\)的指数b不断分解成二进制的形式,然后相乘累加起来, ...

  9. 快速幂 & 矩阵快速幂

    目录 快速幂 实数快速幂 矩阵快速幂 快速幂 实数快速幂 普通求幂的方法为 O(n) .在一些要求比较严格的题目上很有可能会超时.所以下面来介绍一下快速幂. 快速幂的思想其实是将数分解,即a^b可以分 ...

随机推荐

  1. jq、js中判断checkbox是否选中

    最近在开发项目时用到checkbox复选框,其中遇到一个问题:在JQ中如何判断checkbox是否被选中呢?之前用JQ获取元素的属性用的都是attr(),但用在checkbox上却没有用,原因何在?? ...

  2. Boosting决策树:GBDT

    GBDT (Gradient Boosting Decision Tree)属于集成学习中的Boosting流派,迭代地训练基学习器 (base learner),当前基学习器依赖于上一轮基学习器的学 ...

  3. 安卓ios和angularjs相互调用解决首次调用ios传递标题失败的问题

    1.angular 调用客户端方法放在 try catch中 try { js_invoke.showShareDialog(angular.toJson(obj));  // 在这里放客户端的方法即 ...

  4. angularjs 水平滚动选中按钮高亮显示 swiper和回到顶部指令的实现ionic

    首先安装 swiper npm install --save swiper 或者 bower install --save swiper <link rel="stylesheet&q ...

  5. iOSNsPredicate Appium 定位元素

    Appium使用WebDriverAgent之后,新增了一种定位方法iOSNsPredicate,总结了一下使用方法: MobileElement photo = driver.findElement ...

  6. (转)Java 读写Properties配置文件

    原文:http://www.cnblogs.com/xudong-bupt/p/3758136.html 1.Properties类与Properties配置文件 Properties类继承自Hash ...

  7. 如何同时完成多个ajax之后再执行某个方法 ? 使用$.when().done();

    jQuery中的$.when()方法比较复杂,这里不作全面讲解,只写一个同时完成多个ajax请求后执行操作的方法. 有时候我们需要等待多个ajax执行完以后,再执行某个操作. 写法如下: $.when ...

  8. Javascript检测值

    检测原始值用typeof javascript有五种原始类型,分别为字符串.数字.布尔值.null和undefined 判断一个值是什么类型的字符串,可以通过typeof typeof variabl ...

  9. 写JS自执行函数时要注意的

    JS是非强类型语言,且IDE也不够智能,所以经常会在语句结束时漏写了分号,一般情况下这是不影响运行的, 但如果后面跟上的是一段自执行的函数,就会报出 "..... is not functi ...

  10. 二阶段项目所遇问题 如何实现php向js传输数据

    首先当前页面做了一个双处理的界面,就是有PhP也有JS的处理界面. 上一个传值界面是一个PHP的传值,结果,在当前页面的JS中也要用到上一界面传的值,这时发现,PHP与JS就像是两个互相孤立的小岛,根 ...