机器学习中的数学

觉得有用的话,欢迎一起讨论相互学习~Follow Me

原创文章,如需转载请保留出处

本博客为七月在线邹博老师机器学习数学课程学习笔记

索引

  • 微积分,梯度和Jensen不等式
  • Taylor展开及其应用
  • 常见概率分布和推导
  • 指数族分布
  • 共轭分布
  • 统计量
  • 矩估计和最大似然估计
  • 区间估计
  • Jacobi矩阵
  • 矩阵乘法
  • 矩阵分解RQ和SVD
  • 对称矩阵
  • 凸优化

微积分与梯度

  • 常数e的计算过程
  • 常见函数的导数
  • 分部积分法及其应用
  • 梯度
  • 上升/下降最快方向
  • 凸函数
  • Jensen不等式

自然常数e

引入

  • 我们知道对于公式\(y=log_{a}x\),x=1时,y=0.则我们是否能找一点a值,使得y函数在(1,0)点的导数为1呢?

    利用导数公式对\(y=log_{a}x\)求导

定理一:极限存在定理

  • 单调有界函数必有极限
  • 单调数列有上线,必有其极限

构造数列Xn证明其单调有上界

  • 又因为其有(1+1)项,则其必比2要大然而又比3要小,则\(2<X_n<3\)

定理二:两边夹定理

自然常数e的推导

  • \[自然常数e可以看做e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}\]

微分与积分

常用函数的导数公式

分部积分法

方向导数与梯度

对于方向导数我们也可以视为\[(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}).(cos\varphi.sin\varphi)^{T}\]方向导数顾名思义既是复合函数在某一方向上的导数,表示函数在某一方向上的变化趋势。当在某一方向上的方向导数最大时,即是梯度 当 \[cos\varphi =\frac{\partial f}{\partial x}\\sin\varphi = \frac{\partial f}{\partial y}\] 时,这是方向导数取最大值,即是梯度

对于梯度我们有

  • 方向导数是各个方向上的导数
  • 偏导数连续才有梯度存在
  • 梯度的方向是方向导数中取到最大值的方向,梯度的值是方向导数的最大值


凸函数与Jsnsen不等式

  • 简而言之,即是函数的割线永远位于函数图像的上方.

一阶可微

  • 简而言之,即是函数如果是一个凸函数,且一阶可微,则过函数任意一点做函数的切线,函数的切线永远在函数的下方.

二阶可微

凸函数举例

Jensen不等式

  • Jensen不等式相当于把凸函数的概念反过来说,即是如果f是一个凸函数,任意取一个在f定义域上的(x,y)点,\(\theta\)属于[0,1].
  • 当只有x,y两个参数,即是使用 基本Jensen不等式 ,然而当推广到k个参数时, 即是表示参数的线性加权的函数值总要小于函数值的线性加权.
  • 可以将其推广到概率密度分布上,假设\(\theta\)表示是事件的概率密度K点分布即所加和为1,则函数值的期望大于期望的函数值

PS:这都是在f是凸函数的状况下!

  • Jensen不等式是所有不等式的基础,所有不等式都能看做是Jensen不等式利用不同的凸函数推导出来的.

课程传送门

机器学习数学|微积分梯度jensen不等式的更多相关文章

  1. 归并排序、jensen不等式、非线性、深度学习

    前言 在此记录一些不太成熟的思考,希望对各位看官有所启发. 从题目可以看出来这篇文章的主题很杂,这篇文章中我主要讨论的是深度学习为什么要"深"这个问题.先给出结论吧:"深 ...

  2. 机器学习数学|Taylor展开式与拟牛顿

    机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 Taylor 展式与拟牛顿 索引 taylor ...

  3. coursera机器学习笔记-机器学习概论,梯度下降法

    #对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...

  4. 机器学习(1)之梯度下降(gradient descent)

    机器学习(1)之梯度下降(gradient descent) 题记:最近零碎的时间都在学习Andrew Ng的machine learning,因此就有了这些笔记. 梯度下降是线性回归的一种(Line ...

  5. 机器学习数学|偏度与峰度及其python实现

    机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 矩 对于随机变量X,X的K阶原点矩为 \[E( ...

  6. 数学分析中jensen不等式由浅入深进行教学(转)

    中国知网:数学分析中Jensen不等式由浅入深进行教学

  7. Jensen 不等式

    若f(x)为区间I上的下凸(上凸)函数,则对于任意xi∈I和满足∑λi=1的λi>0(i=1,2,...,n),成立: \[f(\sum ^{n} _{i=1} \lambda _{i}x_{i ...

  8. POJ 1183 反正切函数的应用(数学代换,基本不等式)

    题目链接:http://poj.org/problem?id=1183 这道题关键在于数学式子的推导,由题目有1/a=(1/b+1/c)/(1-1/(b*c))---------->a=(b*c ...

  9. 【数学基础篇】---详解极限与微分学与Jensen 不等式

    一.前述 数学基础知识对机器学习还有深度学习的知识点理解尤为重要,本节主要讲解极限等相关知识. 二.极限 1.例子 当 x 趋于 0 的时候,sin(x) 与 tan(x) 都趋于 0. 但是哪一个趋 ...

随机推荐

  1. JQuery实现banner图滚动

      前  言           jQuery是一个功能强大的库,提供了开发JavaScript项目所需的所有核心函数.很多时候我们使用jQuery的原因就是因为其使用插件的功能,然而,有时候我们还是 ...

  2. 使用javaAPI操作hdfs

    欢迎到https://github.com/huabingood/everyDayLanguagePractise查看源码. 一.构建环境 在hadoop的安装包中的share目录中有hadoop所有 ...

  3. 【JAVA零基础入门系列】Day5 Java中的运算符

    运算符,顾名思义就是用于运算的符号,比如最简单的+-*/,这些运算符可以用来进行数学运算,举个最简单的栗子: 已知长方形的长为3cm,高为4cm,求长方形的面积. 好,我们先新建一个项目,命名为Rec ...

  4. js系列教程2-对象、构造函数、对象属性全解

    全栈工程师开发手册 (作者:栾鹏) 快捷链接: js系列教程1-数组操作全解 js系列教程2-对象和属性全解 js系列教程3-字符串和正则全解 js系列教程4-函数与参数全解 js系列教程5-容器和算 ...

  5. Linux软件安装管理

    1.软件包管理简介 1.软件包分类 源码包 脚本安装包 二进制包(RPM包.系统默认包) 2.源码包 源码包的优点是: 开源,如果有足够的能力,可以修改源代码 可以自由选择所需要的功能 软件设计编译安 ...

  6. Spring MVC Ajax 嵌套表单数据的提交

    概述 在一些场景里,某个大表单里常常嵌套着一个或若干个小逻辑块,比如以下表单里"设计预审"中包括了一个子模块表单"拟定款项". 在这种情况下该怎么去设计实体类以 ...

  7. PE格式第八讲,TLS表(线程局部存储)

    PE格式第八讲,TLS表(线程局部存储) 作者:IBinary出处:http://www.cnblogs.com/iBinary/版权所有,欢迎保留原文链接进行转载:) 一丶复习线程相关知识 首先讲解 ...

  8. C# 基础之类型(一)

    一.类型 类型总共分为两种,一种是值类型(Value Type),如枚举.结构:另一种是引用类型(Reference Type),如类.接口.委托等. 值类型 1,值类型通常分配在线程的堆栈上 2,作 ...

  9. Django - - - -视图层之视图函数(views)

    视图层之视图函数(views) 一个视图函数,简称视图,是一个简单的Python 函数,它接受Web请求并且返回Web响应.响应可以是一张网页的HTML内容,一个重定向,一个404错误,一个XML文档 ...

  10. 【转】漫谈linux文件IO--io流程讲的很清楚

    [转]漫谈linux文件IO--io流程讲的很清楚 这篇文章写的比较全面,也浅显易懂,备份下.转载自:http://blog.chinaunix.net/uid-27105712-id-3270102 ...