U-boot 下DM驱动模型的相关笔记
要注意的关键两点:

DM驱动模型的一般流程bind->ofdata_to_platdata(可选)->probe
    启动,bind操作时单独完成的,主要完成设备和驱动的绑定,以及node 注:node是匹配到驱动的设备节点 之间的连接。ofdata_to_platdata(可选)->probe 则是在device_probe函数中完成的。

明确了以上两点,接下来就开始展开分析U-boot下设计到驱动模型的一半流程,我依据的是U-boot 2018.03版本
和DM相关的初始化流程主要有两次,入口函数分别是static int initf_dm(void)和static int initr_dm(void)。
第一次是在重定位之前,调用的是initf_dm函数,函数的调用关系如下所示:

initf_dm//执行bind操作,初始化一个dm模型的树形结构
    dm_init_and_scan(true)//初始化根节点设备,并bind根节点的带有u-boot,dm-pre-reloc属性的一级子节点。
        dm_init//将根节点绑定到gd->dm_root上,初始化根节点设备
            dm_scan_platdata//搜索使用宏U_BOOT_DEVICE定义的设备进行驱动匹配,也就是bind子节点
            dm_extended_scan_fdt//在其他地方(设备树)搜索设备并进行驱动匹配,然后bind
                dm_scan_fdt//在设备树种搜索设备并进行驱动匹配,然后bind
                    dm_scan_fdt_node//具体绑定设备的入口,在该函数中会确定设备是否具有boot,dm-pre-reloc属性,如果没有则不会绑定
                        lists_bind_fdt//搜索可以匹配到该设备的驱动
                            device_bind_with_driver_data//如果匹配到进行绑定
                                device_bind_common//匹配设备和驱动,并将设备节点和parent节点建立联系,也就是建立树形结构
                                    uclass_bind_device//将该设备挂在对应的U_CLASS链表上
                                    drv->bind(dev)//设备驱动的bind接口函数
                                    parent->driver->child_post_bind(dev)//父节点驱动的child_post_bind接口函数
                                    uc->uc_drv->post_bind//设备所属类的驱动的post_bind接口函数(具体的设备节点就是在这个接口下在soc下进行展开的)

至此,dm相关的一半bind流程就介绍完了,执行完initf_dm之后,内存中就有了一个深度最深为2(只有根节点时,深度为1)的树形结构,根节点挂在gd->dm_root上。
同样的,static int initr_dm(void)执行了类似的操作,只不过,

gd->dm_root_f = gd->dm_root; gd->dm_root = NULL;

重定位之后,首先将gd->dm_root的值赋值给gd->dm_root_f;然后清零了gd->dm_root,接下来才是重新执行dm_init_and_scan(false)操作,

dm_init_and_scan(false)//初始化根节点设备,并bind根节点的所有子节点
    ************省略,见initf_dm函数流程
bind操作完成之后,就可以对设备进行probe操作了,示例一下sdram的初始化流程,我用的板子是基于stm32f767igt的YYFISH board。和sdram基于fmc,并且除了sdram,fmc下还挂了一个4Gbit 的 nand flash,设备树相关的源码如下:

&fmc {
pinctrl-0 = <&fmc_pins>;
pinctrl-names = "default";
status = "okay";
#address-cells = <1>;
#size-cells = <1>;

/* Memory configuration from sdram datasheet MT48LC_4M32_B2B5-6A */
bank1: bank@0 {
       st,sdram-control = /bits/ 8 <NO_COL_9 NO_ROW_13 MWIDTH_16 BANKS_4
                        CAS_3 SDCLK_2 RD_BURST_EN
                    RD_PIPE_DL_1>;
       st,sdram-timing = /bits/ 8 <TMRD_2 TXSR_8 TRAS_7 TRC_7 TWR_2
                       TRP_2 TRCD_2>;
    /* refcount = (64msec/total_row_sdram)*freq - 20 */
       st,sdram-refcount = < 1421 >;
   };
bank3: stm32_nand {
    reg = <0xA0000080 0x20>;
    /*Nand flash configuretion from flash datasheet MT29F4G08ABADA*/
    compatible = "micron,mt29f4g", "st,nand-flash";
    st,nand-control = /bits/ 8 <FMC_PWAIT_DIS FMC_PWID_8 FMC_ECC_DIS
        FMC_TCLR_6 FMC_TAR_6 FMC_ECCPS_512>;
    st,nand-timing = /bits/ 8 <MEMSET_VALE_2 MEMWAIT_VALE_4 MEMHOLD_VALE_2
        MEMHIZ_VALE_2>;
    u-boot,dm-pre-reloc;
    };
};

从设备树文件可以看出,fmc下挂了两个节点,但是bank3;stm32_nand是我后来添加的,为了增加nand_flash的支持,所以stm32_nand就是fmc的一级子节点。fmc是root的子节点,树形结构的示意图如下

root
    \
    soc
        \
        fmc
             \
            stm32_nand

根据上面对initf_dm和initr_dm的分析,可知,这两个函数只是完成了root的一级子节点的树形创建,并且sdram的初始化是在重定向之前,也就是执行了initf_dm之后完成的(稍后会具体分析)。所以initf_dm执行之后,内存中只有如下的一个树形图:

root
    \
    soc
        \
        fmc

这时候是没有nand_flash这个设备节点的。nand_flash这个设备节点的绑定,我放在了fmc这个节点的probe流程中,具体是在ofdata_to_platdata这个接口函数中完成的。具体如下所示:

dev_for_each_subnode(bank_node, dev) {
    /* extract the bank index from DT */
    bank_name = (char *)ofnode_get_name(bank_node);
        if (!strncmp("stm32_nand", bank_name, strlen("stm32_nand")))//iysheng
        {   
            lists_bind_fdt(dev, bank_node, NULL);
            continue;
        }
}

从上述代码可以看出,当我device_probe fmc这个设备节点的时候,我会首先调用对应driver的ofdata_to_platdata函数接口,在这个接口函数中,会遍历子节点,如果发现名字是以stm32_nand开头的,那么会将这个设备节点进行进行bind操作,执行完这句话之后,设备树中的fmc节点下就会出现一个stm32_nand子节点,这时候树的深度从2变为了3。
接着会调用fmc节点对应驱动的probe接口函数,具体如下:

static int stm32_fmc_probe(struct udevice *dev)
{
    ******省略一些内容,和sdram初始化相关的内容
    if (device_has_children(dev))
    {
        struct udevice * child_devp;
        int index = 0;
        while(!device_get_child(dev, index++, &child_devp)) {
            ret = device_probe(child_devp);
            if (ret < 0)
                break;
        }
    }
}

可以看出,stm32_fmc_probe的时候,会尝试probe fmc节点下的所有子节点。因为之前已经添加了stm32_nand节点,这时候就会去probe stm32_nand那个设备了。
接下来简述一下sdram的probe流程。函数调用过程如下:

int dram_init(void)
    uclass_get_device(UCLASS_RAM, 0, &dev)
        uclass_find_device(id, index, &dev)
        uclass_get_device_tail(dev, ret, devp)
            device_probe(dev)
                device_probe(dev->parent)//递归probe父节点
                uclass_resolve_seq//父节点都probe之后,会分配一个seq给该设备
                dev->flags |= DM_FLAG_ACTIVATED//设置该设备的flag为激活状态
                pinctrl_select_state(dev, "default")//和引脚相关的初始化设置<需要进一步分析>
                dev->parent->driver->child_pre_probe(dev)//执行父节点驱动的child_pre_probe接口函数
                drv->ofdata_to_platdata(dev)//执行设备驱动的ofdata_to_platdata接口函数
                clk_set_defaults(dev)//设备时钟相关的设置
                drv->probe(dev)//调用设备驱动的probe接口函数
                uclass_post_probe_device(dev)//调用所属CLASS驱动的post_probe接口函数

至此,sdram的初始化流程介绍了一下,从上可以看出,device_probe过程中,会首先调用ofdata_to_platdata接口函数,然后才会执行probe接口函数。
————————————————
版权声明:本文为CSDN博主「iysheng」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/iysheng/article/details/79921825

u-boot下的DM驱动模型 阶梯状 (转)的更多相关文章

  1. 详解Linux2.6内核中基于platform机制的驱动模型 (经典)

    [摘要]本文以Linux 2.6.25 内核为例,分析了基于platform总线的驱动模型.首先介绍了Platform总线的基本概念,接着介绍了platform device和platform dri ...

  2. Linux下 USB设备驱动分析(原创)

    之前做过STM32的usb HID复合设备,闲来看看linux下USB设备驱动是怎么一回事, 参考资料基于韦东山JZ2440开发板,以下,有错误欢迎指出. 1.准备知识 1.1USB相关概念: USB ...

  3. 从串口驱动的移植看linux2.6内核中的驱动模型 platform device & platform driver【转】

    转自:http://blog.csdn.net/bonnshore/article/details/7979705 写在前面的话: 博主新开了个人站点:你也可以在这里看到这篇文章,点击打开链接 本文是 ...

  4. 让天堂的归天堂,让尘土的归尘土——谈Linux的总线、设备、驱动模型

    本文系转载,著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 作者: 宋宝华 来源: 微信公众号linux阅码场(id: linuxdev) 公元1951年5月15日的国会听证上, ...

  5. [uboot] (番外篇)uboot 驱动模型(转)重要

    [uboot] uboot流程系列:[project X] tiny210(s5pv210)上电启动流程(BL0-BL2)[project X] tiny210(s5pv210)从存储设备加载代码到D ...

  6. 【tornado】系列项目(二)基于领域驱动模型的区域后台管理+前端easyui实现

    本项目是一个系列项目,最终的目的是开发出一个类似京东商城的网站.本文主要介绍后台管理中的区域管理,以及前端基于easyui插件的使用.本次增删改查因数据量少,因此采用模态对话框方式进行,关于数据量大采 ...

  7. Linux中总线设备驱动模型及平台设备驱动实例

    本文将简要地介绍Linux总线设备驱动模型及其实现方式,并不会过多地涉及其在内核中的具体实现,最后,本文将会以平台总线为例介绍设备和驱动程序的实现过程. 目录: 一.总线设备驱动模型总体介绍及其实现方 ...

  8. 【tornado】系列项目(一)之基于领域驱动模型架构设计的京东用户管理后台

    本博文将一步步揭秘京东等大型网站的领域驱动模型,致力于让读者完全掌握这种网络架构中的“高富帅”. 一.预备知识: 1.接口: python中并没有类似java等其它语言中的接口类型,但是python中 ...

  9. linux驱动模型<输入子系统>

    在linux中提供一种输入子系统的驱动模型,其主要是实现在input.c中. 在输入子系统这套模型中,他把驱动分层分类.首先分为上下两层,上层为input.c .下层为驱动的实现,下层分为两部分,一部 ...

随机推荐

  1. 单点登录之CAS原理和实现(转载)

    转载源:https://www.jianshu.com/p/613c615b7ef1 单点登录之CAS原理和实现 来源于作者刘欣的<码农翻身> + 自己的备注理解 这家集团公司财大气粗,竟 ...

  2. kube-metric在kubernetes上的部署

    1.拿包 wgethttps://github.com/kubernetes/kube-state-metrics/archive/v1.7.2.tar.gz 2.tar -zxf  v1.7.2.t ...

  3. Linux下查看文件编码及批量修改编码

    查看文件编码在Linux中查看文件编码可以通过以下几种方式:1.在Vim中可以直接查看文件编码:set fileencoding即可显示文件编码格式.如果你只是想查看其它编码格式的文件或者想解决用Vi ...

  4. Windows冷门快捷键

    Win+Shift+>或者+<光标键,可以使一个程序,在双屏显示器上左右切换. alt+space快捷键相当于在窗口的标题栏上面右键单击,弹出菜单,选择M键,就可以使用光标键上下左右移动来 ...

  5. redis db0-15 的概念

    redis默认有db0~db15之多. redis有没有什么方法使不同的应用程序数据彼此分开同时又存储在相同的实例上呢?就相当于mysql数据库,不同的应用程序数据存储在不同的数据库下. redis下 ...

  6. AC自动机练习2:修改串

    这道题的话用到了dp,一个比较简单的dp方程 1466: [AC自动机]修改串 poj3691 时间限制: 1 Sec  内存限制: 128 MB提交: 18  解决: 14[提交] [状态] [讨论 ...

  7. Spring MVC(一)Spring MVC的原理

    1.Spring MVC的目的 构建像Spring框架那样灵活和松耦合的Web应用程序. 2.Spring MVC中如何处理Request? 每当用户在Web浏览器中点击链接或者提交表单时,Reque ...

  8. IaaS、PaaS、SaaS是云计算的三种服务模式

    IaaS.PaaS.SaaS是云计算的三种服务模式 1. SaaS:Software-as-a-Service(软件即服务)提供给客户的服务是运营商运行在云计算基础设施上的应用程序,用户可以在各种设备 ...

  9. Spring Boot 版本支持

    一.Spring Boot 版本支持 Spring Boot Spring Framework Java Maven Gradle 1.2.0之前版本   6 3.0+ 1.6+ 1.2.0 4.1. ...

  10. javascript中 visibility和display区别在哪

    差异: 1.占用的空间不同. 可见性占用域空间,而显示不占用. 可见性和显示可以隐藏页面,例如: 将元素显示属性设置为block将在该元素后换行. 将元素显示属性设置为inline将消除元素换行. 将 ...