准确率(Precision)、召回率(Recall)以及综合评价指标(F1-Measure)
在信息检索和自然语言处理中经常会使用这些参数,下面简单介绍如下:
准确率与召回率(Precision & Recall)
我们先看下面这张图来加深对概念的理解,然后再具体分析。其中,用P代表Precision,R代表Recall
一般来说,Precision 就是检索出来的条目中(比如:文档、网页等)有多少是准确的,Recall就是所有准确的条目有多少被检索出来了。
下面这张表介绍了True Positive,False Negative等常见的概念,P和R也往往和它们联系起来。
Relevant | NonRelevant | |
Retrieved | true positives (tp) | false positives(fp) |
Not Retrieved | false negatives(fn) | true negatives (tn) |
那么,
我们当然希望检索的结果P越高越好,R也越高越好,但事实上这两者在某些情况下是矛盾的。比如极端情况下,我们只搜出了一个结果,且是准确的,那么P就是100%,但是R就很低(tp==1,fp==0,fn很大,tn==0);而如果我们把所有结果都返回(全部都检索到了,不过检索到不相关的也有很多,即fp很大,fn==0),那么必然R是100%,但是P很低。
因此在不同的场合中需要自己判断希望P比较高还是R比较高。如果是做实验研究,可以绘制Precision-Recall曲线来帮助分析。
F1-Measure
前面已经讲了,P和R指标有的时候是矛盾的,那么有没有办法综合考虑他们呢?我想方法肯定是有很多的,最常见的方法应该就是F-Measure了,有些地方也叫做F-Score,其实都是一样的。
F-Measure是Precision和Recall加权调和平均:
当参数a=1时,就是最常见的F1了:
很容易理解,F1综合了P和R的结果,当F1较高时则比较说明实验方法比较理想。
准确率(Precision)、召回率(Recall)以及综合评价指标(F1-Measure)的更多相关文章
- 准确率(Precision),召回率(Recall)以及综合评价指标(F1-Measure)
准确率和召回率是数据挖掘中预测,互联网中得搜索引擎等经常涉及的两个概念和指标. 准确率:又称“精度”,“正确率” 召回率:又称“查全率” 以检索为例,可以把搜索情况用下图表示: 相关 不相关 检索 ...
- 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure
yu Code 15 Comments 机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accu ...
- 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure(对于二分类问题)
首先我们可以计算准确率(accuracy),其定义是: 对于给定的测试数据集,分类器正确分类的样本数与总样本数之比.也就是损失函数是0-1损失时测试数据集上的准确率. 下面在介绍时使用一下例子: 一个 ...
- 目标检测评价标准(mAP, 精准度(Precision), 召回率(Recall), 准确率(Accuracy),交除并(IoU))
1. TP , FP , TN , FN定义 TP(True Positive)是正样本预测为正样本的数量,即与Ground truth区域的IoU>=threshold的预测框 FP(Fals ...
- 机器学习 F1-Score 精确率 - P 准确率 -Acc 召回率 - R
准确率 召回率 精确率 : 准确率->accuracy, 精确率->precision. 召回率-> recall. 三者很像,但是并不同,简单来说三者的目的对象并不相同. 大多时候 ...
- 评估指标:准确率(Precision)、召回率(Recall)以及F值(F-Measure)
为了能够更好的评价IR系统的性能,IR有一套完整的评价体系,通过评价体系可以了解不同信息系统的优劣,不同检索模型的特点,不同因素对信息检索的影响,从而对信息检索进一步优化. 由于IR的目标是在较短时间 ...
- 机器学习算法中的准确率(Precision)、召回率(Recall)、F值(F-Measure)
摘要: 数据挖掘.机器学习和推荐系统中的评测指标—准确率(Precision).召回率(Recall).F值(F-Measure)简介. 引言: 在机器学习.数据挖掘.推荐系统完成建模之后,需要对模型 ...
- 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure)
下面简单列举几种常用的推荐系统评测指标: 1.准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量.其中精度 ...
- 推荐系统评测指标--准确率(Precision)和召回率(Recall)、F值(F-Measure)
转自http://bookshadow.com/weblog/2014/06/10/precision-recall-f-measure/ 1,准确率和召回率是广泛应用于信息检索和统计学分类领域的两个 ...
- 准确率和召回率(precision&recall)
在机器学习.推荐系统.信息检索.自然语言处理.多媒体视觉等领域,常常会用到准确率(precision).召回率(recall).F-measure.F1-score 来评价算法的准确性. 一.准确率和 ...
随机推荐
- xcode 中 vary for traits详解
https://www.jianshu.com/p/d6896437e5a7 这篇文章写的很好!
- C# UdpClient使用
客户端: public class UdpClientManager { //接收数据事件 public Action<string> recvMessageEvent = null; / ...
- Ajax fileUpload
在项目开发中用到ajax 的 fileUpload,遇到onchange事件只触发一次 原因是fileUpload调用后将原有的file元素改变了,需要早upload后重新绑定元素 第一次绑定: $( ...
- 03—Code First
Code First模式我们称之为“代码优先”模式,使用Code First模式进行EF开发时开发人员只需要编写对应的数据类(其实就是领域模型的实现过程),然后自动生成数据库.这样设计的 ...
- 关于create-react-app(react-scripts@3.3.0)升级的坑
今天用create-react-app my-app,看到下面的提示: A template was not provided. This is likely because you're using ...
- CSP-S2019 退役记/赛后总结
真就退役了呗. 作为一名非常失败的OIer,开了一个非常失败的blog,一直想在赛后写点什么,做点什么,总结些什么.自csp结束以来,徘徊了半个月,今夜里终于还是起笔了. 因为从来没写过这种玩意,不妨 ...
- hdu4612 Warm up[边双连通分量缩点+树的直径]
给你一个连通图,你可以任意加一条边,最小化桥的数目. 添加一条边,发现在边双内是不会减少桥的.只有在边双与边双之间加边才有效.于是,跑一遍边双并缩点,然后就变成一棵树,这样要加一条非树边,路径上的点( ...
- 《深入理解Java虚拟机》之(一、内存区域)
一.java的体系构成: Java的技术体系主要由支撑java程序运行的虚拟机.提供各种开发领域接口支持的java api.java编程语言及许多第三方java框架(如Spring .Struts等) ...
- Java中的数据结构通俗易懂的介绍
Java中有几种常用的数据结构,主要分为Collection和map两个主要接口(接口只提供方法,并不提供实现),而程序中最终使用的数据结构是继承自这些接口的数据结构类. List(接口)List是有 ...
- Java生成压缩文件(zip、rar 格式)
jar坐标: <dependency> <groupId>org.apache.ant</groupId> <artifactId>ant</ar ...