1、图片效果

2、原代码

# !/usr/bin/python
# -*- coding: utf-8 -*-
# Copyright (c) 2015 Matthew Earl
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
# NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
# USE OR OTHER DEALINGS IN THE SOFTWARE. """
This is the code behind the Switching Eds blog post:
http://matthewearl.github.io/2015/07/28/switching-eds-with-python/
See the above for an explanation of the code below.
To run the script you'll need to install dlib (http://dlib.net) including its
Python bindings, and OpenCV. You'll also need to obtain the trained model from
sourceforge:
http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2
Unzip with `bunzip2` and change `PREDICTOR_PATH` to refer to this file. The
script is run like so:
./faceswap.py <head image> <face image>
If successful, a file `output.jpg` will be produced with the facial features
from `<head image>` replaced with the facial features from `<face image>`.
""" import cv2
import dlib
import numpy import sys
output = 'out3' # 输出图像名称
sys.argv = ["isWap_faces.py", "./facesImage/head1.jpg", "./facesImage/head.jpg"]
# PREDICTOR_PATH = "/home/matt/dlib-18.16/shape_predictor_68_face_landmarks.dat"
PREDICTOR_PATH = "./model/shape_predictor_68_face_landmarks.dat"
SCALE_FACTOR = 1
FEATHER_AMOUNT = 11 FACE_POINTS = list(range(17, 68))
MOUTH_POINTS = list(range(48, 61))
RIGHT_BROW_POINTS = list(range(17, 22))
LEFT_BROW_POINTS = list(range(22, 27))
RIGHT_EYE_POINTS = list(range(36, 42))
LEFT_EYE_POINTS = list(range(42, 48))
NOSE_POINTS = list(range(27, 35))
JAW_POINTS = list(range(0, 17)) # Points used to line up the images.
ALIGN_POINTS = (LEFT_BROW_POINTS + RIGHT_EYE_POINTS + LEFT_EYE_POINTS +
RIGHT_BROW_POINTS + NOSE_POINTS + MOUTH_POINTS) # Points from the second image to overlay on the first. The convex hull of each
# element will be overlaid.
OVERLAY_POINTS = [
LEFT_EYE_POINTS + RIGHT_EYE_POINTS + LEFT_BROW_POINTS + RIGHT_BROW_POINTS,
NOSE_POINTS + MOUTH_POINTS,
] # Amount of blur to use during colour correction, as a fraction of the
# pupillary distance.
COLOUR_CORRECT_BLUR_FRAC = 0.4 detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(PREDICTOR_PATH) class TooManyFaces(Exception):
pass class NoFaces(Exception):
pass def get_landmarks(im):
rects = detector(im, 1) if len(rects) > 1:
raise TooManyFaces
if len(rects) == 0:
raise NoFaces return numpy.matrix([[p.x, p.y] for p in predictor(im, rects[0]).parts()]) def annotate_landmarks(im, landmarks):
im = im.copy()
for idx, point in enumerate(landmarks):
pos = (point[0, 0], point[0, 1])
cv2.putText(im, str(idx), pos,
fontFace=cv2.FONT_HERSHEY_SCRIPT_SIMPLEX,
fontScale=0.4,
color=(0, 0, 255))
cv2.circle(im, pos, 3, color=(0, 255, 255))
return im def draw_convex_hull(im, points, color):
points = cv2.convexHull(points)
cv2.fillConvexPoly(im, points, color=color) def get_face_mask(im, landmarks):
im = numpy.zeros(im.shape[:2], dtype=numpy.float64) for group in OVERLAY_POINTS:
draw_convex_hull(im,
landmarks[group],
color=1) im = numpy.array([im, im, im]).transpose((1, 2, 0)) im = (cv2.GaussianBlur(im, (FEATHER_AMOUNT, FEATHER_AMOUNT), 0) > 0) * 1.0
im = cv2.GaussianBlur(im, (FEATHER_AMOUNT, FEATHER_AMOUNT), 0) return im def transformation_from_points(points1, points2):
"""
Return an affine transformation [s * R | T] such that:
sum ||s*R*p1,i + T - p2,i||^2
is minimized.
"""
# Solve the procrustes problem by subtracting centroids, scaling by the
# standard deviation, and then using the SVD to calculate the rotation. See
# the following for more details:
# https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem points1 = points1.astype(numpy.float64)
points2 = points2.astype(numpy.float64) c1 = numpy.mean(points1, axis=0)
c2 = numpy.mean(points2, axis=0)
points1 -= c1
points2 -= c2 s1 = numpy.std(points1)
s2 = numpy.std(points2)
points1 /= s1
points2 /= s2 U, S, Vt = numpy.linalg.svd(points1.T * points2) # The R we seek is in fact the transpose of the one given by U * Vt. This
# is because the above formulation assumes the matrix goes on the right
# (with row vectors) where as our solution requires the matrix to be on the
# left (with column vectors).
R = (U * Vt).T return numpy.vstack([numpy.hstack(((s2 / s1) * R,
c2.T - (s2 / s1) * R * c1.T)),
numpy.matrix([0., 0., 1.])]) def read_im_and_landmarks(fname):
im = cv2.imread(fname, cv2.IMREAD_COLOR)
im = cv2.resize(im, (im.shape[1] * SCALE_FACTOR,
im.shape[0] * SCALE_FACTOR))
s = get_landmarks(im) return im, s def warp_im(im, M, dshape):
output_im = numpy.zeros(dshape, dtype=im.dtype)
cv2.warpAffine(im,
M[:2],
(dshape[1], dshape[0]),
dst=output_im,
borderMode=cv2.BORDER_TRANSPARENT,
flags=cv2.WARP_INVERSE_MAP)
return output_im def correct_colours(im1, im2, landmarks1):
blur_amount = COLOUR_CORRECT_BLUR_FRAC * numpy.linalg.norm(
numpy.mean(landmarks1[LEFT_EYE_POINTS], axis=0) -
numpy.mean(landmarks1[RIGHT_EYE_POINTS], axis=0))
blur_amount = int(blur_amount)
if blur_amount % 2 == 0:
blur_amount += 1
im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0)
im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0) # Avoid divide-by-zero errors.
im2_blur += (128 * (im2_blur <= 1.0)).astype(im2_blur.dtype) return (im2.astype(numpy.float64) * im1_blur.astype(numpy.float64) /
im2_blur.astype(numpy.float64)) im1, landmarks1 = read_im_and_landmarks(sys.argv[1])
im2, landmarks2 = read_im_and_landmarks(sys.argv[2]) M = transformation_from_points(landmarks1[ALIGN_POINTS],
landmarks2[ALIGN_POINTS]) mask = get_face_mask(im2, landmarks2)
warped_mask = warp_im(mask, M, im1.shape)
combined_mask = numpy.max([get_face_mask(im1, landmarks1), warped_mask],
axis=0) warped_im2 = warp_im(im2, M, im1.shape)
warped_corrected_im2 = correct_colours(im1, warped_im2, landmarks1) output_im = im1 * (1.0 - combined_mask) + warped_corrected_im2 * combined_mask cv2.imwrite('./outImage/{}.jpg'.format(output), output_im)

  

3、目录结构

python AI换脸 用普氏分析法(Procrustes Analysis)实现人脸对齐的更多相关文章

  1. Procrustes Analysis普氏分析法

    选取N幅同类目标物体的二维图像,并用上一篇博文的方法标注轮廓点,这样就得到训练样本集: 由于图像中目标物体的形状和位置存在较大偏差,因此所得到的数据并不具有仿射不变性,需要对其进行归一化处理.这里采用 ...

  2. 帕累托分析法(Pareto Analysis)(柏拉图分析)

    帕累托分析法(Pareto Analysis)(柏拉图分析) ABC分类法是由意大利经济学家帕雷托首创的.1879年,帕累托研究个人收入的分布状态图是地,发现少数人收入占全部人口收入的大部分,而多数人 ...

  3. 用200行Python代码“换脸”

    介绍 本文将介绍如何编写一个只有200行的Python脚本,为两张肖像照上人物的“换脸”. 这个过程可分为四步: 检测面部标记. 旋转.缩放和转换第二张图像,使之与第一张图像相适应. 调整第二张图像的 ...

  4. 程序员体验AI换脸就不要用ZAO了,详解Github周冠军项目Faceswap的变脸攻略

    本文链接:https://blog.csdn.net/BEYONDMA/article/details/100594136       上个月笔者曾在<银行家杂志>发文传统银行如何引领开放 ...

  5. python笔记之常用模块用法分析

    python笔记之常用模块用法分析 内置模块(不用import就可以直接使用) 常用内置函数 help(obj) 在线帮助, obj可是任何类型 callable(obj) 查看一个obj是不是可以像 ...

  6. 2017人生总结(MECE分析法)

    试着用MECE分析法对人生的整个规划做一下总结.作为技术人员,其实除了编码架构能力之外,分析问题的能力的重要程度也会随着职业发展越来越重要.<美团点评技术博客>说这几天要在黄金时段头版头条 ...

  7. 基于Python的信用评分卡模型分析(二)

    上一篇文章基于Python的信用评分卡模型分析(一)已经介绍了信用评分卡模型的数据预处理.探索性数据分析.变量分箱和变量选择等.接下来我们将继续讨论信用评分卡的模型实现和分析,信用评分的方法和自动评分 ...

  8. 从Vehicle-ReId到AI换脸,应有尽有,解你所惑

    最近在做视频搜索的技术调研,已经初步有了一些成果输出,算法准确性还可以接受,基本达到了调研的预期.现将该技术调研过程中涉及到的内容总结一篇文章分享出来,内容比较多,初看起来可能关系不大,但是如果接触面 ...

  9. TINY语言采用递归下降分析法编写语法分析程序

    目录 自顶向下分析方法 TINY文法 消左提左.构造first follow 基本思想 python构造源码 运行结果 参考来源:聊聊编译原理(二) - 语法分析 自顶向下分析方法 自顶向下分析方法: ...

随机推荐

  1. systemctl详解

    [root@hadoop01 hadoop]# systemctl --help systemctl [OPTIONS...] {COMMAND} ... Query or send control ...

  2. jQuery和vue 设置ajax全局请求

    一个很常见的问题,如果用户登录网站session过期,需要用户返回登录页面重新登录. 如果是http请求可以在后台设置拦截器,统一拦截并跳转.但是ajax方法并不能通过后台直接跳转. 所以我们可以写一 ...

  3. Java中两个Long对象如何比较是否相等

    学java的都知道8种基本类型,知道Long和long的区别,前者定义的是对象,后者定义的是long类型的变量. 但是今天在比较两个Long类型值的时候碰到一个坑,如下: 问题如下 Long a = ...

  4. Hadoop-No.4之列式存储格式

    列式系统可提供的优势 对于查询内容之外的列,不必执行I/O和解压(若适用)操作 非常适合仅访问小部分列的查询.如果访问的列很多,则行存格式更为合适 相比由多行构成的数据块,列内的信息熵更低,所以从压缩 ...

  5. Python之exec()/compile()方法使用

    # Python内置函数exec()可以用来执行Python代码 # 或内置函数compile()编译的代码对象 # exec程序中可写入python语法格式的代码,并直接输出. exec('prin ...

  6. 【winfrom-Button】设置带图标样式的Button

    this.myButton.BackColor = System.Drawing.SystemColors.Control; this.myButton.FlatAppearance.BorderCo ...

  7. jmeter-请求头需要URIEncode编译时

    使用函数 ${__urldecode()} 例如 :${__urldecode(%E4%BB%93%E5%BA%93)}${__urldecode(${参数变量})}

  8. python 中type和object的关系

    转自:https://segmentfault.com/a/1190000008938763 学习python的同学都知道这么几句话 object类是所有新式类的父类. type是所有类的类. 那么t ...

  9. 中国剩余定理及其拓展 CRT&EXGCD

    中国剩余定理,又叫孙子定理. 作为一个梗广为流传.其实它的学名叫中国单身狗定理. 中国剩余定理 中国剩余定理是来干什么用的呢? 其实就是用来解同余方程组的.那么什么又是同余方程组呢. 顾名思义就是n个 ...

  10. vue整合adminLTE

    前端框架AdminLTE 中文教程 如何用vue整合adminlte模板 1.adminlte 下载地址 : https://github.com/almasaeed2010/AdminLTE/rel ...