很好的一道题呀

思路

状态\(d(i,j)\)表示已经经过了行程单中的\(i\)个城市,目前在城市\(j\)的最小代价,直接建边跑最短路就行了

比如机票为\(ACBD\),行程单为\(CD\),那么对于\((0,A)\),连向\((1,C)\),\((1,B)\),\((2,D)\)

有两个需要注意的地方

1.起点为\((1,行程单的起点)\)

2.城市编号很大,要离散化

以下是代码,离散化用\(map\)完成

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <string>
#include <vector>
#include <cmath>
#include <ctime>
#include <queue>
#include <map>
#include <set> using namespace std; #define ull unsigned long long
#define pii pair<int, int>
#define uint unsigned int
#define mii map<int, int>
#define lbd lower_bound
#define ubd upper_bound
#define INF 0x3f3f3f3f
#define IINF 0x3f3f3f3f3f3f3f3fLL
#define DEF 0x8f8f8f8f
#define DDEF 0x8f8f8f8f8f8f8f8fLL
#define vi vector<int>
#define ll long long
#define mp make_pair
#define pb push_back
#define re register
#define il inline #define N 10000 struct Edge {
int next, from, to, w, id;
}e[2000000]; int ticketCnt, routeCnt, nodeCnt, cityCnt;
int price[250], cities[250];
vi tickets[250];
map<pii, int> nodeId;
mii cityId;
pii originNode[N+5];
int head[N+5], eid;
int d[N+5], pre[N+5];
bool inq[N+5];
int stk[N+5], tp;
queue<int> q; void addEdge(int u, int v, int w, int id) {
e[++eid] = Edge{head[u], u, v, w, id};
head[u] = eid;
} void spfa() {
memset(d, 0x3f, sizeof d);
memset(inq, 0, sizeof inq);
memset(pre, 0, sizeof pre);
int S = nodeId[mp(1, cities[1])];
d[S] = 0;
q.push(S);
while(!q.empty()) {
int u = q.front(); q.pop();
inq[u] = 0;
for(int i = head[u]; i; i = e[i].next) {
int v = e[i].to, w = e[i].w;
if(d[v] > d[u]+w) {
d[v] = d[u]+w;
pre[v] = i;
if(!inq[v]) inq[v] = 1, q.push(v);
}
}
}
} void mark(int u) {
if(!pre[u]) return ;
stk[++tp] = e[pre[u]].id;
mark(e[pre[u]].from);
} int main() {
int kase = 0;
while(~scanf("%d", &ticketCnt) && ticketCnt) {
++kase;
nodeCnt = cityCnt = 0;
nodeId.clear();
cityId.clear();
for(int i = 1, cnt; i <= ticketCnt; ++i) {
scanf("%d%d", &price[i], &cnt);
tickets[i].clear();
for(int j = 1, x; j <= cnt; ++j) {
scanf("%d", &x);
if(!cityId.count(x)) cityId[x] = ++cityCnt;
tickets[i].pb(cityId[x]);
}
}
scanf("%d", &routeCnt);
for(int t = 1, len; t <= routeCnt; ++t) {
memset(head, 0, sizeof head);
eid = 0;
scanf("%d", &len);
for(int c = 1; c <= len; ++c) {
scanf("%d", &cities[c]);
if(!cityId.count(cities[c])) cityId[cities[c]] = ++cityCnt;
cities[c] = cityId[cities[c]];
}
for(int ticket = 1; ticket <= ticketCnt; ++ticket) {
for(int i = cities[1] == tickets[ticket][0]; i <= len; ++i) {
int cnt = i;
pii cur = mp(i, tickets[ticket][0]);
if(!nodeId.count(cur)) nodeId[cur] = ++nodeCnt, originNode[nodeCnt] = cur;
for(int j = 1; j < tickets[ticket].size(); ++j) {
if(cnt+1 <= len && cities[cnt+1] == tickets[ticket][j]) cnt++;
pii newState = mp(cnt, tickets[ticket][j]);
if(!nodeId.count(newState)) nodeId[newState] = ++nodeCnt, originNode[nodeCnt] = newState;
addEdge(nodeId[cur], nodeId[newState], price[ticket], ticket);
}
}
}
spfa();
printf("Case %d, Trip %d: Cost = %d\n", kase, t, d[nodeId[mp(len, cities[len])]]);
printf(" Tickets used: ");
tp = 0;
mark(nodeId[mp(len, cities[len])]);
for(int i = tp; i > 1; --i) printf("%d ", stk[i]);
printf("%d\n", stk[1]);
}
}
return 0;
}

UVa1048 Low Cost Air Travel——最短路的更多相关文章

  1. SCU 4444: Travel(最短路)

    Travel The country frog lives in has n towns which are conveniently numbered by 1,2,…,n . Among n(n− ...

  2. Travel(最短路)

    Travel The country frog lives in has nn towns which are conveniently numbered by 1,2,…,n1,2,…,n. Amo ...

  3. [USACO09JAN]安全出行Safe Travel 最短路,并查集

    题目描述 Gremlins have infested the farm. These nasty, ugly fairy-like creatures thwart the cows as each ...

  4. L147 Low Cost Study Has High Impact Results For Premature Babies

    No one knows exactly why some babies are born prematurely(早产), but some of the smallest premature ba ...

  5. 【BZOJ1576】[Usaco2009 Jan]安全路经Travel 最短路+并查集

    [BZOJ1576][Usaco2009 Jan]安全路经Travel Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, ...

  6. BZOJ1576: [Usaco2009 Jan]安全路经Travel(最短路 并查集)

    题意 给你一张无向图,保证从1号点到每个点的最短路唯一.对于每个点求出删掉号点到它的最短路上的最后一条边(就是这条路径上与他自己相连的那条边)后1号点到它的最短路的长度 Sol emmm,考场上想了个 ...

  7. Minimum Transport Cost Floyd 输出最短路

    These are N cities in Spring country. Between each pair of cities there may be one transportation tr ...

  8. uva 1048 最短路的建图 (巧,精品)

    大白书 P341这题说的是给了NT种飞机票,给了价钱和整个途径,给了nI条要旅游的路线.使用飞机票都必须从头第一站开始坐,可以再这个路径上的任何一点下飞机一但下飞机了就不能再上飞机,只能重新买票,对于 ...

  9. 最短路+状态压缩dp(旅行商问题)hdu-4568-Hunter

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4568 题目大意: 给一个矩阵 n*m (n m<=200),方格里如果是0~9表示通过它时要花 ...

随机推荐

  1. Docker下mysql容器开启binlog日志(保留7天)

    现有需求开启用Docker容器启动的mysql数据库的binlog,以作为 日志记录 和 数据恢复,我们了解了MySQL的binlog日志的开启方式以及binlog日志的一些原理和常用操作,我们知道, ...

  2. Hanlp-地名识别调试方法详解

    HanLP收词特别是实体比较多,因此特别容易造成误识别.下边举几个地名误识别的例子,需要指出的是,后边的机构名识别也以地名识别为基础,因此,如果地名识别不准确,也会导致机构名识别不准确. 类型1 数字 ...

  3. Oracle数据库连接工具的使用(二)

    一.SQL Plus介绍 1.简介 Oracle的sql plus是与oracle进行交互的客户端工具.在sql plus中,可以运行sql plus命令与sql语句. 我们通常所说的DML.DDL. ...

  4. 使用pycharm开发web——django2.1.5(四)视图和模板相关

    刘老师说这块很重要..... 应该是很重要,大概看了一下,这里面关于views中函数作用,大概看来可能就是相应请求,传入数据和跳转,基本功能上貌似这些框架都差不多吧(其实我并没用过3个框架以上.... ...

  5. 后台返回数据为map集合,前端js处理方法

    当后台返回的数据不是json而是map集合的时候,前端js中处理就将其看作是一个数组,例如后台返回的代码入下: Map<String, String> result = new HashM ...

  6. 【剑指OFFER】链表中倒数第k个结点

    [问题描述] 输入一个链表,输出该链表中倒数第k个结点. 时间限制:1秒 空间限制:32768K [AC代码] p先走k步,q再走,这样p和q的距离就是k了,等p走到尽头,那么q自然就到了倒数第k个位 ...

  7. Python--类的调用

    类的调用 实例化 class Luffy: school = 'luffy' def __init__(self,name,age): self.Name = name self.Age = age ...

  8. Pycharm 配置houdini

    一.houdini开发环境配置 1.添加Python可执行文件 2.设置代码自动补全 刚刚添加的Python.exe,右侧点击加号,依次添加以上长方形中的文件,路径会根据个人安装路径有所变化,后面的目 ...

  9. Oracle导入数据后中文乱码的解决方法

    解决方法: 方法一. 1.在运行命令行输入regedit,打开注册表编辑器 2.找到HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\KEY_OraDb11g_home1 3.看N ...

  10. 常用javascript内置对象——String对象

    创建 String 对象的语法: 1:new String(s); :2:String(s); :3:直接赋值 String中属性 String中方法 <script> window.on ...