题意

给定一个长度为\(n\)的正整数序列,第\(i\)个数为\(h_i\),\(m\)个询问,每次询问\((l, r, w)\),为\([l, r]\)所有长度为\(w\)的子区间最小值的最大值。(类似于一类特殊的直方图最大子矩形问题)

\(1 \leq n, m \leq 10^5\)

题解

我们考虑二分答案,这样\(n\)个数变成\(01\),若\(h_i\geq mid\)则为\(0\),否则为\(1\)

每次就相当于查询存不存在长度为\(w\)的连续\(1\)。用线段树维护。

这有个问题,\([l, r]\)分成\([l, mid - 1]\)和\([mid, r]\)的时候,左区间统计不到右区间的贡献。那我们就递归左区间之前不清空线段树,等到递归右区间的时候再清空。

时间复杂度两个log

#include <algorithm>
#include <cstdio>
using namespace std; const int N = 2e5 + 10; struct opt { int l, r, k, id; } q[N], qL[N], qR[N];
int n, m, h[N], ans[N];
struct node { int res, l, r, len; } t[N << 2]; node operator + (const node &a, const node &b) {
node ans; ans.len = a.len + b.len;
ans.l = a.l == a.len ? a.l + b.l : a.l;
ans.r = b.r == b.len ? b.r + a.r : b.r;
ans.res = max(max(a.res, b.res), a.r + b.l);
return ans;
} void build(int u, int l, int r) {
if(l == r) { t[u] = (node) {0, 0, 0, 1}; return ; }
int mid = (l + r) >> 1;
build(u << 1, l, mid);
build(u << 1 | 1, mid + 1, r);
t[u] = t[u << 1] + t[u << 1 | 1];
} void ins(int u, int l, int r, int x, int y) {
if(l == r) { t[u] = (node) {y, y, y, 1}; return ; }
int mid = (l + r) >> 1;
if(x <= mid) ins(u << 1, l, mid, x, y);
else ins(u << 1 | 1, mid + 1, r, x, y);
t[u] = t[u << 1] + t[u << 1 | 1];
} node qry(int u, int l, int r, int ql, int qr) {
if(l == ql && r == qr) return t[u];
int mid = (l + r) >> 1;
if(qr <= mid) return qry(u << 1, l, mid, ql, qr);
if(ql > mid) return qry(u << 1 | 1, mid + 1, r, ql, qr);
return qry(u << 1, l, mid, ql, mid) + qry(u << 1 | 1, mid + 1, r, mid + 1, qr);
} void solve(int ql, int qr, int l, int r) {
if(ql > qr || l > r) return ;
if(l == r) {
for(int i = ql; i <= qr; i ++) ans[q[i].id] = l;
return ;
}
// printf("[%d, %d] & [%d, %d]\n", ql, qr, l, r);
int mid = (l + r + 1) >> 1, nl = 0, nr = 0;
for(int i = ql; i <= qr; i ++) {
if(!q[i].id) {
if(q[i].k >= mid) ins(1, 1, n, q[i].l, 1), qR[nr ++] = q[i];
else qL[nl ++] = q[i];
} else {
int res = qry(1, 1, n, q[i].l, q[i].r).res;
if(res >= q[i].k) qR[nr ++] = q[i];
else qL[nl ++] = q[i];
}
}
for(int i = 0; i < nl; i ++) q[ql + i] = qL[i];
for(int i = 0; i < nr; i ++) q[ql + nl + i] = qR[i];
solve(ql, ql + nl - 1, l, mid - 1);
for(int i = ql + nl; i <= qr; i ++) if(!q[i].id && q[i].k >= mid) ins(1, 1, n, q[i].l, 0);
solve(ql + nl, qr, mid, r);
}
int main() {
scanf("%d", &n);
for(int i = 1; i <= n; i ++) scanf("%d", h + i), q[i] = (opt) {i, 0, h[i], 0};
int l = *min_element(h + 1, h + n + 1);
int r = *max_element(h + 1, h + n + 1);
scanf("%d", &m);
for(int i = n + 1; i <= n + m; i ++) {
scanf("%d%d%d", &q[i].l, &q[i].r, &q[i].k); q[i].id = i - n;
}
build(1, 1, n); solve(1, n + m, l, r);
for(int i = 1; i <= m; i ++) printf("%d\n", ans[i]);
return 0;
}

「CF484E」Sign on Fence「整体二分」「线段树」的更多相关文章

  1. (困难) CF 484E Sign on Fence,整体二分+线段树

    Bizon the Champion has recently finished painting his wood fence. The fence consists of a sequence o ...

  2. 【XSY2720】区间第k小 整体二分 可持久化线段树

    题目描述 给你你个序列,每次求区间第\(k\)小的数. 本题中,如果一个数在询问区间中出现了超过\(w\)次,那么就把这个数视为\(n\). 强制在线. \(n\leq 100000,a_i<n ...

  3. 2019.01.14 bzoj5343: [Ctsc2018]混合果汁(整体二分+权值线段树)

    传送门 整体二分好题. 题意简述:nnn种果汁,每种有三个属性:美味度,单位体积价格,购买体积上限. 现在有mmm个询问,每次问能否混合出总体积大于某个值,总价格小于某个值的果汁,如果能,求所有方案中 ...

  4. P5163 WD与地图(整体二分+权值线段树)

    传送门 细节要人命.jpg 这题思路太新奇了--首先不难发现可以倒着做变成加边,但是它还需要我们资瓷加边的同时维护强连通分量.显然加边之后暴力跑是不行的 然后有一个想法,对于一条边\((u,v)\), ...

  5. 【CF484E】Sign on Fence(主席树)

    [CF484E]Sign on Fence(主席树) 题面 懒得贴CF了,你们自己都找得到 洛谷 题解 这不就是[TJOI&HEOI 排序]那题的套路吗... 二分一个答案,把大于答案的都变成 ...

  6. 「线段树」「单点修改」洛谷P1198 [JSOI2008]最大数

    「线段树」「单点修改」洛谷P1198 [JSOI2008]最大数 题面描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数, ...

  7. 洛谷P1527 [国家集训队] 矩阵乘法 [整体二分,二维树状数组]

    题目传送门 矩阵乘法 题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入输出格式 输入格式: 第一行两个数N,Q,表示矩阵大小和询问组数: 接下来N行N列一共N* ...

  8. [bzoj4009] [HNOI2015]接水果 整体二分+扫描线+dfs序+树状数组

    Description 风见幽香非常喜欢玩一个叫做 osu!的游戏,其中她最喜欢玩的模式就是接水果. 由于她已经DT FC 了The big black, 她觉得这个游戏太简单了,于是发明了一个更 加 ...

  9. 「CF319E」Ping-Pong「线段树」「并查集」

    题意 规定区间\((a,b)\)到区间\((c,d)\)有边当且仅当\(c<a<d\)或\(c<b<d\). 起初区间集合为空.有\(n\)(\(n\leq 10^5\))次操 ...

随机推荐

  1. Scratch 母鸡保护鸡蛋

    今天我们一起实现一个“母鸡保护鸡蛋”的小游戏 具体思路是这样滴: 1.鸡蛋会不断的从右往左移动: 2.当母鸡快碰到鸡蛋的时候,按下“空格键”让母鸡跳跃起来: 3.如果母鸡落下没碰到鸡蛋,加一分: 4. ...

  2. 调整统计信息JOB采样时间

    一.需求说明 Oracle数据库中存在定时JOB,自动执行收集统计信息的程序.但是对于7*24小时系统来说,Oracle配置的定时收集时间不太合理,需要人为调整.本篇博客就是基于这种需求,调整JOB采 ...

  3. jvm垃圾回收器介绍

    上篇文章中我们讨论了jvm的内存区域,这篇文章我们来讨论针对的内存区域的垃圾回收机制. 其实针对垃圾回收我们通常考虑三个问题:1.哪些内存需要回收?2.什么时候回收?3.如何回收?下面我们针对这三个问 ...

  4. android 蓝牙连接端(客户端)封装

    0.权限  AndroidManifest.xml <uses-permission android:name="android.permission.BLUETOOTH"/ ...

  5. 从jvm源码看synchronized

    从jvm源码看synchronized 索引 synchronized的使用 修饰实例方法 修饰静态方法 修饰代码块 总结 Synchronzied的底层原理 对象头和内置锁(ObjectMonito ...

  6. iis7 运行多个https,433端口监听多个htps 站点

    默认情况一个服务器的IIS只能绑定一个HTTPS也就是443端口,现在有需要一个服务器 iis 433 端口 绑定多个 申请到证书后(不是必须要通配符的证书),添加多个https站点,先绑定别的端口 ...

  7. Asp.Net Core 轻松学系列-4玩转配置文件

    目录 前言 另类方式使用 hosting.json 使程序运行于多个端口 结语 前言     在 .NET Core 项目中,配置文件有着举足轻重的地位:与.NetFramework 不同的是,.NE ...

  8. IT 界那些朗朗上口的“名言”

    中国有很多古代警世名言,朗朗上口,凝聚了很多故事与哲理.硅谷的互联网公司里头也有一些这样的名言,凝聚了很多公司价值观和做事的方法,对于很多程序员来说,其影响潜移默化! Stay hungry Stay ...

  9. java中的管程

    前言 ​ 并发编程这个技术领域已经发展了半个世纪了,相关的理论和技术纷繁复杂.那有没有一种核心技术可以很方便地解决我们的并发问题呢?这个问题如果让我选择,我一定会选择管程技术.Java 语言在 1.5 ...

  10. strconv:各种数据类型和字符串之间的相互转换

    介绍 strconv包实现了基本数据类型和其对应字符串之间的相互转换.主要有一下常用函数:Atoi,Itoa,Parse系列,Formart系列,Append系列 string和int之间的转换 这一 ...