Lucas定理

当\(p\)是质数时,有\((^n_m)\equiv(^{n/p}_{m/p}) * (^{n\%p}_{m\%p}) \pmod{p}\)

狄利克雷卷积

定义:\((f*g)(n)=\sum_{d|n}f(d)g(\frac{n}{d})\)

然后满足交换律,结合律,分配律

单位元:\(e=[n=1]\),即\(f*e=e*f=f\)

逆元:对于每一个\(f(1)\ne0\)的函数\(f\),存在逆元\(g\)使得\(f*g=e\)

那么\(g(n)\)满足递推式:

\(g(n)=\frac{1}{f(1)}([n=1]-\sum_{i|n,i\ne1}f(i)g(\frac{n}{i}))\)

Extra

定义1:\((f\oplus g)(x)=\sum_{x|d}f(\frac{d}{x})g(d)\)

那么有,\((f*g)\oplus h =f \oplus (g \oplus h)\)

定义2:\((f\cdot g)(x)=f(x)g(x)\)

那么当\(f\)是完全积性函数时,有\((f\cdot g)*(f\cdot h)=f\cdot (g*h)\)

常见数论函数

\(1(x)=1\)

\(id^k(x)=x^k\)

\(\phi(x)=\sum_{i=1}^{x}[gcd(i,x)=1]\)

\(d(x)=\sum_{d|x}1\)

\(\sigma(x)=\sum_{d|x}d\)

\(\mu:1\)的逆元

其中的一些关系:

\(d = 1*1\)

\(id = 1*\phi\)

\(\sigma=1*id=1*1*\phi=d*\phi\)

\(\phi=id*\mu\)

\(1=d*\mu\)

\(id=\sigma*\mu\)

莫比乌斯反演

如果\(g=f*1\),则\(g*\mu=f\)

如果\(g=1\oplus f\),则\(f=\mu \oplus g\)

证明:\(\mu \oplus g=\mu \oplus (1 \oplus f)=(\mu * 1)\oplus f = f\)

例题

[SDOI2015] 约数个数和

求\(\sum_{i=1}^n\sum_{i=1}^md(ij)\)

\(d(ij)=\sum_{a|i}\sum_{b|j}[gcd(a,b)=1]\)

那么,原式等于

\[\sum_{i=1}^n\sum_{i=1}^m\sum_{a|i}\sum_{b|j}[gcd(a,b)=1]=
\sum_{i=1}^n\sum_{j=1}^m\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{j}\rfloor[gcd(i,j)=1]
\]

\[\sum_{d=1}^n\mu(d)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{id}\rfloor\sum_{i=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{m}{id}\rfloor
\]

定义:\(S(n)=\sum_{i=1}^n\lfloor\frac{n}{i}\rfloor\)

void init() {
mu[1] = 1;
for (int i = 2; i <= 50000; i++) {
if (!np[i]) { p[++tot] = i; mu[i] = -1; }
for (int j = 1; j <= tot && p[j] * i <= 50000; j++) {
np[p[j] * i] = 1;
if (!(i % p[j])) break;
mu[p[j] * i] = -mu[i];
}
}
for (int i = 2; i <= 50000; i++) mu[i] += mu[i - 1];
for (int i = 1; i <= 50000; i++)
for (int l = 1, r; l <= i; l = r + 1) {
r = i / (i / l);
S[i] += (r - l + 1) * (i / l);
}
return ;
}
main() {
init();
int T;
scanf("%lld", &T);
while (T--) {
int n, m;
scanf("%lld%lld", &n, &m);
if (n > m) swap(n, m);
int ans = 0;
for (int l = 1, r; l <= n; l = r + 1) {
r = min(m / (m / l), n / (n / l));
ans += (mu[r] - mu[l - 1]) * S[n / l] * S[m / l];
}
printf("%lld\n", ans);
}
return 0;
}

[SHOI2015]超能粒子炮·改

求\(\sum_{i=0}^{k}(^n_i)\)

根据\(Lucas\)定理

可以通过对模数相同的放在一块计算

再递归求解即可。

int Lucas(LL n, LL m) {
if (!n || !m) return 1;
return Lucas(n / P, m / P) * C[n % P][m % P] % P;
}
int f(LL n, LL k) {
if (n <= 3000 && k <= 3000) return F[n][k];
return (f(n % P, P - 1) * f(n / P, k / P - 1) % P +
f(n % P, k % P) * Lucas(n / P, k / P) % P) % P;
}
void init() {
for (int i = 0; i <= 3000; i++) C[i][0] = 1;
for (int i = 1; i <= 3000; i++)
for (int j = 1; j <= i; j++)
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % P;
for (int i = 0; i <= 3000; i++) {
F[i][0] = C[i][0];
for (int j = 1; j <= 3000; j++)
F[i][j] = (F[i][j - 1] + C[i][j]) % P;
}
return ;
}

CF1097F Alex and a TV Show

因为只关心奇偶性,我们考虑使用\(bitset\)维护因子集合\(g(x)\)

操作2是异或

操作3是并

因为\(g=1\oplus f\)

\(f(x)\)是\(x\)在集合出现的次数

反演一下就是,\(f=\mu\oplus g\)

void prework(int n) {
Mu.set();
for (int i = 2; i * i <= n; i++)
for (int j = 1; j * i * i <= n; j++)
Mu[i * i * j] = 0;
for (int i = 1; i <= n; i++)
for (int j = 1; j * i <= n; j++)
mu[i][j * i] = Mu[j], p[j * i][i] = 1;
}
int main() {
prework(7000);
int n, Q;
scanf("%d%d", &n, &Q);
while (Q--) {
int op, x, y, z;
scanf("%d%d%d", &op, &x, &y);
if (op == 1) S[x] = p[y];
else if (op == 2) {
scanf("%d", &z);
S[x] = S[y] ^ S[z];
}
else if (op == 3) {
scanf("%d", &z);
S[x] = S[y] & S[z];
}
else printf("%d", (mu[y] & S[x]).count() & 1);
}
return 0;
}

Luogu5176 公约数

首先,\(gcd(ij,jk,ik)=\frac{gcd(i,j)gcd(j,k)gcd(i,k)}{gcd(i,j,k)}\)

那么,

\(Ans=\sum_i\sum_j\sum_k(i,j)^2(j,k)^2(i,k)^2\)

\(=\sum_i\sum_j\sum_k(i,j)^2(j,k)^2+\sum_i\sum_j\sum_k^2(j,k)^2(i,k)^2+\sum_i\sum_j\sum_k(i,j)^2(i,k)^2\)

那么定义\(F(n,m)=\sum_i\sum_j(i,j)^2\),则\(Ans=F(n,m)*p+F(n,p)*m+F(m,p)*n\)

现在问题就是求\(F(n,m)\)

\(F(n,m)=\sum_i\sum_j(i,j)^2\)

\(=\sum_{d=1}^nd^2\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[gcd(i,j)=1]\)

\(=\sum_{d=1}^nd^2\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}\sum_{k|i,k|j}\mu(k)\)

\(=\sum_{d=1}^nd^2\sum_{k=1}^{\lfloor\frac{n}{d}\rfloor}\mu(k)\lfloor\frac{n}{kd}\rfloor\lfloor\frac{m}{kd}\rfloor\)

到这一步已经可以做到\(O(n ^ \frac{3}{4})\)

考虑优化,

设\(T=kd\)

原式\(=\sum_{T=1}^n\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum_{d|T}d^2\mu(\frac{T}{d})\)

可以发现后面就是\(id^2*\mu\)

显然是个积性函数,考虑线性筛

\(f(p^0)=1\)

\(f(p)=p^2-1\)

\(f(p^k)=(p^2-1)p^{2(k-1)}=p^2f(p^{k-1})\)

xgzc— math 专题训练(一)的更多相关文章

  1. xgzc— math 专题训练(二)

    费马小定理&欧拉定理 费马小定理: 如果\(p\)是一个质数,而整数\(a\)不是\(p\)的倍数,\(a^{p-1}\equiv1\pmod p\) 欧拉定理: 当\(a\)与\(n\)互质 ...

  2. dp专题训练

    ****************************************************************************************** 动态规划 专题训练 ...

  3. DP专题训练之HDU 2955 Robberies

    打算专题训练下DP,做一道帖一道吧~~现在的代码风格完全变了~~大概是懒了.所以.将就着看吧~哈哈 Description The aspiring Roy the Robber has seen a ...

  4. bryce1010专题训练——LCA

    1.Targan算法(离线) http://poj.org/problem?id=1470 /*伪代码 Tarjan(u)//marge和find为并查集合并函数和查找函数 { for each(u, ...

  5. bryce1010专题训练——LCT&&树链剖分

    LCT&&树链剖分专题 参考: https://blog.csdn.net/forever_wjs/article/details/52116682

  6. bryce1010专题训练——Splay树

    Prob Hint BZOJ 3323 文艺平衡树 区间翻转 BZOJ 1251 序列终结者 区间翻转,询问最值 BZOJ 1895 supermemo 区间加,翻转,剪切,询问最值.点插入,删除. ...

  7. bryce1010专题训练——划分树

    1.求区间第K大 HDU2665 Kth number /*划分树 查询区间第K大 */ #include<iostream> #include<stdio.h> #inclu ...

  8. bryce1010专题训练——树状数组

    Bryce1010模板 1.一维树状数组 https://vjudge.net/contest/239647#problem/A[HDU1556] #include<bits/stdc++.h& ...

  9. Leedcode算法专题训练(数组与矩阵)

    1. 把数组中的 0 移到末尾 283. Move Zeroes (Easy) Leetcode / 力扣 class Solution { public void moveZeroes(int[] ...

随机推荐

  1. qt-博客

    将QQ中的图文聊天内容显示到Qt界面: http://www.qter.org/portal.php?mod=view&aid=12

  2. django静态文件配置和使用

    一.首先需要了解的知识点是: 1.出于对效率和安全的考虑,django管理静态文件的功能仅限于在开发阶段的debug模式下使用,且需要在配置文件的INSTALLED_APPS中加入django.con ...

  3. RMAN执行crosscheck archive报错ORA-19633问题处理

    一.问题现象 RMAN connect target /; run { crosscheck archivelog all; } ORA-: control file record is out of ...

  4. Linux自动运维工具Ansible的使用

    Linux自动运维工具Ansible的使用 我们熟悉这个工具后, 可以很轻松的安装k8s. 一.介绍 ansible - run a task on a target host(s) Ansible是 ...

  5. eclipse复制工作空间配置步骤

    多个workspace,把每个workspace的设置共享,省去每次都重新配置一次. 总结一下,复制工作空间配置步骤如下: [最好是在新的workspace创建项目之前操作] 1 使用eclipse新 ...

  6. XCode下在不同位置声明变量的用法(转)

    XCode下在不同位置声明变量的用法 方式一:直接在.h文件@interface中的大括号中声明. @interface Test : NSObject { NSString *str; // 私有变 ...

  7. Ajax的学习

    AJAX的学习 AJAX的简介 AJAX即“Asynchronous Javascript And XML”(异步JavaScript和XML),是指一种创建交互式网页应用的网页开发技术. AJAX ...

  8. liunx mkisofs 命令的使用(制作iso)

    参考的博客 http://www.cnblogs.com/darkknightzh/p/8564483.html 有很多时候需要在liunx 环境中将文件打成 iso 所有很多时候就会用到这个命令(m ...

  9. 让你在上司眼里“更靠谱”的六个建议

    "勇于创新"是职场一大谎言 晋升选择题 你有两个下属,你想从他们中挑一个升职,你觉得哪一个更适合? 员工A: 优点:奉行"80%的精力维护20%的重要客户"的原 ...

  10. 用java代码实现

    用java代码实现(1)珠穆朗玛峰高度为8848米,有一张足够大的纸,厚度为0.001米. (2)请问,我折叠多少次,可以折成珠穆朗玛峰的高度/** * @author 18269 * @date 2 ...