6.Java集合-LinkedList实现原理及源码分析
Java中LinkedList的部分源码(本文针对1.7的源码)
LinkedList的基本结构
jdk1.7之后,node节点取代了 entry ,带来的变化是,将1.6中的环形结构优化为了直线型链表结构,从双向循环链表变成了双向链表
在LinkedList中,我们把链子的“环”叫做“节点”,每个节点都是同样的结构。节点与节点之间相连,构成了我们LinkedList的基本数据结构,也是LinkedList的核心。
我们再来看一下LinkedList在jdk1.6和1.7之间结构的区别
LinkedList的构造方法
LinkedList包含3个全局参数,size存放当前链表有多少个节点。
first为指向链表的第一个节点的引用
last为指向链表的最后一个节点的引用
LinkedList的构造方法有两个,一个是无参构造,一个是传入Collection对象的构造
// 什么都没做,是一个空实现
public LinkedList() {
} public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
} public boolean addAll(Collection<? extends E> c) {
return addAll(size, c);
} public boolean addAll(int index, Collection<? extends E> c) {
// 检查传入的索引值是否在合理范围内
checkPositionIndex(index);
// 将给定的Collection对象转为Object数组
Object[] a = c.toArray();
int numNew = a.length;
// 数组为空的话,直接返回false
if (numNew == 0)
return false;
// 数组不为空
Node<E> pred, succ;
if (index == size) {
// 构造方法调用的时候,index = size = 0,进入这个条件。
succ = null;
pred = last;
} else {
// 链表非空时调用,node方法返回给定索引位置的节点对象
succ = node(index);
pred = succ.prev;
}
// 遍历数组,将数组的对象插入到节点中
for (Object o : a) {
@SuppressWarnings("unchecked") E e = (E) o;
Node<E> newNode = new Node<>(pred, e, null);
if (pred == null)
first = newNode;
else
pred.next = newNode;
pred = newNode;
} if (succ == null) {
last = pred; // 将当前链表最后一个节点赋值给last
} else {
// 链表非空时,将断开的部分连接上
pred.next = succ;
succ.prev = pred;
}
// 记录当前节点个数
size += numNew;
modCount++;
return true;
}
注:Node是LinkedList的内部私有类,也是我们的核心节点类
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev; Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
LinkList部分方法分析
addFirst/addLast分析
public void addFirst(E e) {
linkFirst(e);
} private void linkFirst(E e) {
final Node<E> f = first;
final Node<E> newNode = new Node<>(null, e, f); // 创建新的节点,新节点的后继指向原来的头节点,即将原头节点向后移一位,新节点代替头结点的位置。
first = newNode;
if (f == null)
last = newNode;
else
f.prev = newNode;
size++;
modCount++;
}
加入一个新的节点,看方法名就能知道,是在现在的链表的头部加一个节点,既然是头结点,那么头结点的前继必然为null,所以这也是Node<E> newNode = new Node<>(null, e, f);这样写的原因。
之后将first指向了newNode ,指定这个节点以后就就是我们的头结点
之后对原来头节点进行了判断,若在插入元素之前头结点为null,则当前加入的元素就是第一个几点,也就是头结点,所以当前的状况就是:头结点=刚刚加入的节点=尾节点。
若在插入元素之前头结点不为null,则证明之前的链表是有值的,那么我们只需要把新加入的节点的后继指向原来的头结点,而尾节点则没有发生变化。这样一来,原来的头结点就变成了第二个节点了。达到了我们的目的。
addLast方法在实现上是个addFirst是一致的,这里就不在赘述了。有兴趣的朋友可以看看源代码。
其实,LinkedList中add系列的方法都是大同小异的,都是创建新的节点,改变之前的节点的指向关系。仅此而已。
getFirst/getLast方法分析
public E getFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return f.item;
} public E getLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return l.item;
}
get方法分析(node方法的调用)
public E get(int index) {
// 校验给定的索引值是否在合理范围内
checkElementIndex(index);
return node(index).item;
} Node<E> node(int index) {
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
注:关键在于,判断给定的索引值,若索引值大于整个链表长度的一半,则从后往前找,若索引引用值小于整个链表长度的一半,则从前往后找。这样就可以保证,不管链表的长度有多大,搜索的时候最多只搜索链表长度的一半就可以找打,大大提升了效率
removeFirst/removeLast方法分析
public E get(int index) {
// 校验给定的索引值是否在合理范围内
checkElementIndex(index);
return node(index).item;
} Node<E> node(int index) {
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
摘掉头结点,将原来的第二个节点变为头结点,改变first的指向,若之前仅剩一个节点,移除之后全部置为null
对于LinkList的其他方法,大致上都是包装了以上这几个方法
关于集合的一个小补充:
在ArrayList,LinkedList,HashMap等等的增、删、改方法中,我们总能看到modCount的身影,modCount字面意思就是修改次数,但为什么要记录modCount的修改次数呢?
大家发现一个公共特点没有,所有使用modCount属性的集合全是线程不安全的,这是为什么呢?说明modCount 可能和线程安全有关
阅读源码,发现这玩意只有在本数据结构对应的迭代器中才使用,以HashMap为例:
private abstract class HashIterator<E> implements Iterator<E> {
Entry<K,V> next; // next entry to return
int expectedModCount; // For fast-fail
int index; // current slot
Entry<K,V> current; // current entry HashIterator() {
expectedModCount = modCount;
if (size > 0) { // advance to first entry
Entry[] t = table;
while (index < t.length && (next = t[index++]) == null)
;
}
} public final boolean hasNext() {
return next != null;
} final Entry<K,V> nextEntry() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Entry<K,V> e = next;
if (e == null)
throw new NoSuchElementException(); if ((next = e.next) == null) {
Entry[] t = table;
while (index < t.length && (next = t[index++]) == null)
;
}
current = e;
return e;
} public void remove() {
if (current == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Object k = current.key;
current = null;
HashMap.this.removeEntryForKey(k);
expectedModCount = modCount;
}
}
由以上代码可以看出,在一个迭代器初始的时候会赋予它调用这个迭代器的对象的mCount,如果在迭代器遍历的过程中,一旦发现这个对象的mcount和迭代器存储的mcount 不一样,那就抛出异常
所以在以下情况下,会抛出异常:1.单线程的情况下,使用迭代器对象进行遍历,但是在修改长度,使用的是对象本身,对象的mcount产生变化,但是迭代器的mcount不变,差异产生,抛出异常
2.多线程情况下,且集合为共享变量,那么在使用迭代器遍历的时候,如果其他线程修改对象本身的mcount,那么也会产生差异,抛出异常
下面详细解释:
Fail-Fast机制
我们知道java.util.HashMap不是线程安全的,因此如果在使用迭代器的过程中有其他线程修改了map,那么将抛出ConcurrentModificationException,这就是所谓的fail-fast策略。这一策略在源码中的实现是通过 modCount 域,modCount顾名思义就是修改次数,对HashMap内容的修改都将增加这个值,那么在迭代器初始化过程中会将这个值赋给迭代器的expectedModCount。在迭代过程中,判断 modCount跟expectedModCount是否相等,如果不相等就表示,我还在迭代呢,就有其他线程对Map进行了修改,注意到 modCount 声明为 volatile,保证线程之间修改的可见性。
所以在这里和大家建议,当大家遍历那些非线程安全的数据结构时,尽量使用迭代器
6.Java集合-LinkedList实现原理及源码分析的更多相关文章
- 1.Java集合-HashMap实现原理及源码分析
哈希表(Hash Table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表,而HashMap的实现原理也常常 ...
- 4.Java集合-ArrayList实现原理及源码分析
一.ArrayList概述: ArrayList 是基于数组实现的,是一个动态数组,其容量能自动增长,类似于C语言中的动态申请内存,动态增长内存 ArrayList不是线程安全的,只能用在单线程的情况 ...
- 3.Java集合-HashSet实现原理及源码分析
一.HashSet概述: HashSet实现Set接口,由哈希表(实际上是一个HashMap实例)支持,它不保证set的迭代顺序很久不变.此类允许使用null元素 二.HashSet的实现: 对于Ha ...
- 2.Java集合-ConcurrentHashMap实现原理及源码分析
一.为何用ConcurrentHashMap 在并发编程中使用HashMap可能会导致死循环,而使用线程安全的HashTable效率又低下. 线程不安全的HashMap 在多线程环境下,使用HashM ...
- Java集合详解及List源码分析
对于数组我们应该很熟悉,一个数组在内存中总是一块连续的存储空间,数组的创建使用new关键字,数组是引用类型的数据,一旦第一个元素的位置确定,那么后面的元素位置也就确定了,数组有一个最大的局限就是数组一 ...
- Java ThreadPoolExecutor线程池原理及源码分析
一.源码分析(基于JDK1.6) ThreadExecutorPool是使用最多的线程池组件,了解它的原始资料最好是从从设计者(Doug Lea)的口中知道它的来龙去脉.在Jdk1.6中,Thread ...
- java集合【13】——— Stack源码分析走一波
前言 集合源码分析系列:Java集合源码分析 前面已经把Vector,ArrayList,LinkedList分析完了,本来是想开始Map这一块,但是看了下面这个接口设计框架图:整个接口框架关系如下( ...
- Java集合框架之接口Collection源码分析
本文我们主要学习Java集合框架的根接口Collection,通过本文我们可以进一步了解Collection的属性及提供的方法.在介绍Collection接口之前我们不得不先学习一下Iterable, ...
- Java集合之Map和Set源码分析
以前就知道Set和Map是java中的两种集合,Set代表集合元素无序.不可重复的集合:Map是代表一种由多个key-value对组成的集合.然后两个集合分别有增删改查的方法.然后就迷迷糊糊地用着.突 ...
随机推荐
- 阶段5 3.微服务项目【学成在线】_day07 课程管理实战_05-课程修改实战分析
3 课程信息修改 3.1 需求分析 课程添加成功进入课程管理页面,通过课程管理页面修改课程的基本信息.编辑课程图片.编辑课程营销信息等. 本小节实现修改课程. 3.2 课程管理页面说明 3.2.1 页 ...
- 怎样创建一个OpenStack官方账号?
OpenStack官方账号分两种: 社区成员 (Community Member) 基金会成员 (Foundation Member) 基金会成员比社区成员的权利多一点: 允许提交峰会议题 允许对峰会 ...
- centos6.8 ssh 问题
xshell用ROOT不能登录 需要把 /etc/ssh/sshd_config 中的端口新建一个 不能用默认的
- spark osx:WARN NativeCodeLoader:62 - Unable to load native-hadoop library for your platform
spark-env.sh文件中增加,确保${HADOOP_HOME}/lib/native目录下有libhadoop.so文件 export JAVA_LIBRARY_PATH=${HADOOP_HO ...
- 利用PHP应用程序中的远程文件包含(RFI)并绕过远程URL包含限制
来源:http://www.mannulinux.org/2019/05/exploiting-rfi-in-php-bypass-remote-url-inclusion-restriction.h ...
- 搭建iOS开发环境
搭建ios开发环境 1. 直接购买Apple公司的电脑,如MacBook笔记本电脑,默认自带了Mac OS X操作系统. 2.下载安装Xcode和SDK 登录https://develope ...
- linux SSH 登录
1: 远程连接linux server: ssh -p22 root@192.168.XXX.XXX 然后输入密码. 2: 免密码的方式: A: sudo -i B: ssh-keyge ...
- 控件setText与setValue赋值顺序先后区别
1.text与value设置不同的值一定要先赋值 value后赋值text, 否则全为value值 2.若只setValue,则getValue 与 getText获取的值全为value值 $('#t ...
- UIPath工具里面如何入力一览里面的数据
问题描述: UIpath工具如何在网页里面入力一览多条的数据.例如:某个公司里面在自己的内部员工管理的软件里面手动入力公司员工的所有信息之后反馈到数据库当中. 解决方法: UIpath工具来入力数据, ...
- [学习笔记] 在Eclipse中添加用户库 Add User Libraries ,在项目中引用用户库
如果还没有安装Eclipse, 则请参考前文: [学习笔记] 下载.安装.启动 Eclipse(OEPE) 添加用户库 本文主要介绍在项目中直接使用第三方库的情况.就是把第三方的jar文件直接放到某 ...