YY的GCD【luoguP2257】
题目大意
有至多\(10000\)组询问,问\(1 < i \leqslant N \leqslant 10000000, 1 < j \leqslant M \leqslant 10000000\),并且\(gcd(i, j)\)为质数的有多少对。
解题思路
为了方便描述,我们定义\([]\),当\([]\)中表达式为真时为\(1\),否则为\(0\)。同时定义\(Prime\)为素数集合。
下面的讨论中,我们不妨设\(N \leqslant M\)。
我们设
F(n)=\sum_{n|d}^Nf(d)=\lfloor\frac{M}{n}\rfloor\lfloor\frac{N}{n}\rfloor
\]
即,\(f(d)\)是当\(gcd=d\)时的答案数,\(F(n)\)是当\(gcd\)为\(n\)的倍数时的答案数。
我们发现,求\(F(n)\)十分的方便,于是我们考虑能否通过\(F(n)\)将\(f(n)\)表述出来。
由莫比乌斯反演,得
\]
其中\(\mu\)是莫比乌斯函数。
那么答案就可以表示为
Ans & = \sum_{n\in Prime}^Nf(n)\\
& = \sum_{n\in Prime}^N\sum_{n|d}\mu(\frac{d}{n})F(d)\\
& = \sum_{n\in Prime}^N\sum_{n|d}\mu(\frac{d}{n})\lfloor\frac{N}{d}\rfloor\lfloor\frac{M}{d}\rfloor\\
& = \sum_{d}^N\sum_{n|d,n\in Prime}\mu(\frac{d}{n})\lfloor\frac{N}{d}\rfloor\lfloor\frac{M}{d}\rfloor\\
& = \sum_{d}^N\lfloor\frac{N}{d}\rfloor\lfloor\frac{M}{d}\rfloor\sum_{n|d, n\in Prime} \mu(\frac{d}{n})
\end{aligned}
\]
通过稍微修改线筛,我们可以与处理出\(\mu\),然后可以预处理出所有的\(\sum_{n|d,n\in Prime}\mu(\frac{d}{n})\)。最后再整除分块统计答案就可以了。
参考程序
程序中,mu即为\(\mu\),\(Sum\)为前缀和。
#include <bits/stdc++.h>
using namespace std;
const int MaxN = 10000010;
int Mu[ MaxN ], Vis[ MaxN ];
long long Sum[ MaxN ];
int Num, Prime[ 1000010 ];
void Init() {
Mu[ 1 ] = 1;
for( int i = 2; i <= MaxN; ++i ) {
if( !Vis[ i ] ) Prime[ ++Num ] = i, Mu[ i ] = -1;
for( int j = 1; j <= Num && ( long long ) i * Prime[ j ] <= ( long long ) MaxN; ++j ) {
Vis[ i * Prime[ j ] ] = 1;
if( i % Prime[ j ] == 0 ) break;
Mu[ i * Prime[ j ] ] = - Mu[ i ];
}
}
for( int i = 1; i <= MaxN; ++i )
for( int j = 1; j <= Num && ( long long ) i * Prime[ j ] <= ( long long ) MaxN; ++j )
Sum[ i * Prime[ j ] ] += Mu[ i ];
for( int i = 2; i <= MaxN; ++i ) Sum[ i ] += Sum[ i - 1 ];
return;
}
void Work() {
int N, M;
scanf( "%d%d", &N, &M );
if( N > M ) swap( N, M );
long long Ans = 0;
for( int x = 1, y; x <= N; x = y + 1 ) {
y = min( N / ( N / x ), M / ( M / x ) );
Ans += 1LL * ( N / x ) * ( M / x ) * ( Sum[ y ] - Sum[ x - 1 ] );
}
printf( "%lld\n", Ans );
return;
}
int main() {
Init();
int T; scanf( "%d", &T );
for( ; T; --T ) Work();
return 0;
}
YY的GCD【luoguP2257】的更多相关文章
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- [BZOJ2820]YY的GCD
[BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- 【BZOJ】【2820】YY的GCD
莫比乌斯反演 PoPoQQQ讲义第二题. 暴力枚举每个质数,然后去更新它的倍数即可,那个g[x]看不懂就算了…… 为什么去掉了一个memset就不T了→_→…… /****************** ...
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- 【BZOJ 2820】 YY的GCD (莫比乌斯+分块)
YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...
- 【BZOJ2820】YY的GCD(莫比乌斯反演)
[BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...
- YY的GCD
YY的GCD 给出T个询问,询问\(\sum_{i=1}^N\sum_{j=1}^M(gcd(i,j)\in prime)\),T = 10000,N, M <= 10000000. 解 显然质 ...
- 洛谷【P2257】YY的GCD
YY的GCD 原题链接 这应该是我做的第一道莫比乌斯反演的题目. 题目描述 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x ...
- 【BZOJ2820】YY的GCD
[BZOJ2820]YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的( ...
随机推荐
- 怎样获取NodeList某位置上的节点
1. 使用类似 Array 的中括号写法: document.body.childNodes[0] 2. 使用 NodeList.prototype.item(): document.body.chi ...
- 怎样使用 CSS 清除 input 输入框聚焦选中时的蓝色边框?
input 输入框的聚焦选中时的边框是由 outline 属性控制的, 直接使用: input { outline: none } 即可. 如下:
- postpreSQL和oracle数据库的递归
oracle: --包含自身 select * from sec_org start with org_id ='9767FA56D52680AEE043C0A8670580AE' --开始节点 co ...
- Ef数据GroupBy多字段查询Vb.net与c#参考
Dim g = lst.Data.GroupBy(Function(T) New With { Key T.mName, Key T.mUnit, Key T.mPrice }).Select(Fun ...
- winfrom_根据checkbox勾选项增减dgv字段列
1.效果: 2.点击‘配置’按钮: private void btn_configure_Click(object sender, EventArgs e) { string sum = string ...
- .NET CORE API 使用Postman中Post请求获取不到传参问题
开发中遇到个坑 记录下. 使用Postman请求core api 接口时,按之前的使用方法(form-data , x-www-form-urlencoded)怎么设置都无法访问. 最后采用raw写入 ...
- RGB2GRAY 各种算法速度比较,整形乘法比查表法快!
1. 查表法,外循环用 这种格式 : //for(int j = 0; j != h; ++j)// for(int i = 0; i!=w;++i)//. for(int j = 0; j != ...
- 通过javascript得到当前的日期和计算出该班级的平均分
某班的成绩出来了,现在老师要把班级的成绩打印出来. 格式要求: 1.显示打印的日期. 格式为类似“XXXX年XX月XX日 星期X” 的当前的时间. 2.计算出该班级的平均分(保留整数). 同学成绩数据 ...
- shell脚本视频学习1
一.知识点:变量,参数传递 练习1:使用shell脚本,输出当前所在的目录 练习2:计算/etc目录下有多少个文件,用shell脚本实现 ls -l--->数一下, ls -l|wc -l ( ...
- LoadRunner(1)
性能测试:HP LoadRunner11 一.初步概念: 1.功能测试:测试产品的功能是否满足功能需求. 如:ATM取款(在线取款)是否成功或转账操作是否成功 -- 一个用户 2.性能测试:测试产品的 ...