此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面。对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献。有一些刚刚出版的文章,个人非常喜欢,也列出来了。

33. SIFT
关于SIFT,实在不需要介绍太多,一万多次的引用已经说明问题了。SURF和PCA-SIFT也是属于这个系列。后面列出了几篇跟SIFT有关的问题。
[1999 ICCV] Object recognition from local scale-invariant features
[2000 IJCV] Evaluation of Interest Point Detectors
[2006 CVIU] Speeded-Up Robust Features (SURF)
[2004 CVPR] PCA-SIFT A More Distinctive Representation for Local Image Descriptors
[2004 IJCV] Distinctive Image Features from Scale-Invariant Keypoints

[2009 GRSL] Robust scale-invariant feature matching for remote sensing image registration
[2010 IJCV] Improving Bag-of-Features for Large Scale Image Search
[2011 PAMI] SIFTflow Dense Correspondence across Scenes and its Applications

[2014 CVPR] TILDE: A Temporally Invariant Learned DEtector

[2015 TGRS] SAR-SIFT: A SIFT-LIKE ALGORITHM FOR SAR IMAGES

[2017 GRSL] Remote Sensing Image Registration With Modified SIFT and Enhanced Feature Matching

[2017 CVPR] GMS :Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence

 

翻译

鲁棒的尺度不变特征匹配,用于遥感图像配准

作者:Qiaoliang Li, Guoyou Wang, Jianguo Liu

摘要

-在遥感图像配准中采用尺度不变特征变换(SIFT)时,由于遥感图像之间的图像强度与可见图像相比存在显着差异,因此会出现许多关键点的不正确匹配。提出了尺度定向联合约束准则,以实现遥感影像关键点的鲁棒特征匹配。此外,还对每个关键点的特征描述符进行了改进,以克服远程图像对之间的梯度强度和方向差异。多日期,多光谱和多传感器远程图像的实验结果表明,与基于强度和基于SIFT的方法相比,该方法在正确匹配率和对齐精度方面提高了匹配性能。

索引词-特征匹配,图像配准,尺度不变特征变换(SIFT),尺度定向联合限制条件。

Ⅰ 引言

图像配准[1]是远程图像分析任务中至关重要的一步,例如远程图像融合,环境监视,变更检测,地图更新等。已经提出了许多方法来使远程图像配准过程自动化。这些方法可以概括为以下两类。

1)基于像素强度的方法:这些方法中使用的最具代表性的相似性度量是互相关(CC)[1]和互信息[2](MI)。但是,当图像对之间存在较大的旋转或缩放位移时,基于CC的方法就无法胜任,而基于MI的方法由于全局优化的高度计算复杂性而不适用于实时应用。
2)基于图像特征的方法:这些技术从图像中提取诸如边缘[3],角[4],轮廓[5]和特定区域的质心[6]之类的特征,并使用这些特征之间的相关性来确定图像之间的最佳对齐。但是,仅使用某些稀疏功能就无法保证鲁棒性。这些算法中通常需要人工协助,否则正确匹配率(CMT)会相对较低。

直到今天,自动配准具有大位移,旋转和缩放比例的遥感影像仍然是一个挑战。近年来,尺度不变特征变换(SIFT)[7]由于其良好的特性(对图像缩放和旋转不变,并且对照明和摄像机视点的变化不变)具有良好的特性,因此已成功地应用于可见图像的配准和识别。此外,PCA-SIFT [8],CSIFT [9]和GLOH [10]对SIFT进行了相关改进以使其更有效。但是,当我们采用这些基于SIFT的方法来对准遥感图像时,会出现很多错误的关键点匹配;因此,CMT急剧下降。根本原因是,由于拍摄时间,光谱和捕获设备中使用的传感器的不同,远程图像对的同一区域的像素强度可能会显着不同,并且图像对之间的强度映射可能是线性的,非线性且不稳定(图1)。为了克服这个问题,Yi等人[11]提出了SR-SIFT,其中将尺度限制标准引入特征匹配过程。他们声称改进了可见光和红外图像的匹配性能。但是,当成像设备的光谱和传感器之间存在显着差异时,图像对的SR-SIFT的CMT也会明显降低。

为了实现遥感影像关键点的尺度不变特征的鲁棒匹配,我们提出了尺度取向联合限制准则,以排除大量不正确的关键点匹配。此外,还针对远程图像完善了每个关键点的特征描述符。与基于强度的配准算法和SR-SIFT相比,该算法在保持较高对准精度的同时,极大地提高了远程图像的CMT。由于在大多数应用情况下,可以通过“形状保留映射” [1](仅平移,旋转和缩放)对遥感影像中发现的几何失真进行建模,而不会产生较大误差,因此我们采用此简单模型来估算两个关键点集之间的转换参数,以实现更好的计算性能。如有必要,还可以在配准算法中使用诸如透视模型之类的更复杂的模型。

Computer Vision_33_SIFT:Robust scale-invariant feature matching for remote sensing image registration——2009的更多相关文章

  1. Computer Vision_33_SIFT:LIFT: Learned Invariant Feature Transform——2016

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  2. Computer Vision_33_SIFT:Remote Sensing Image Registration With Modified SIFT and Enhanced Feature Matching——2017

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  3. Computer Vision_33_SIFT:An Improved RANSAC based on the Scale Variation Homogeneity——2016

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  4. Computer Vision_33_SIFT:SAR-SIFT: A SIFT-LIKE ALGORITHM FOR SAR IMAGES——2015

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  5. Computer Vision_33_SIFT: A novel point-matching algorithm based on fast sample consensus for image registration——2015

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  6. Computer Vision_33_SIFT:Fast Adaptive Bilateral Filtering——2018

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  7. Computer Vision_33_SIFT:A novel coarse-to-fine scheme for automatic image registration based on SIFT and mutual information——2014

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  8. Computer Vision_33_SIFT:An efficient SIFT-based mode-seeking algorithm for sub-pixel registration of remotely sensed images——2015

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  9. Computer Vision_33_SIFT:ORB_An efficient alternative to SIFT or SURF——2012

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

随机推荐

  1. Egret中图片颜色的改变,颜色矩阵

    参考: 图片处理:颜色矩阵和坐标变换矩阵 Egret-滤镜 之前面试有问到如何改变图片的颜色.貌似之前做Flash的时候做过,做Egret后没有此类需求,所以一直没有研究过. 现在来弄一弄如何改变图片 ...

  2. 关于spring项目报错:找不到元素 'beans' 的声明的解决办法

    @参考文章 首先是spring.xml中引用地址错误,部分http://***写成https://***了. 其次是spring.xml中引入的版本不对,我用的4.1.3的,直接写 http://ww ...

  3. SqlServer触发器常用语法AFTER、INSTEAD OF及其详解

    先创建一个简单的触发器 CREATE TRIGGER trigger_name ON table_name [WITH ENCRYPTION] FOR | AFTER | INSTEAD OF [DE ...

  4. layer实现鼠标悬浮效果

    ; $(document).on('mouseenter', '.layer_hover', function(){ var words = $(this).data('words'); tip_in ...

  5. [ kvm ] 学习笔记 6:virsh 命令及功能详解

    1. 虚拟机管理操作 attach-device 从XML文件附加设备 attach-disk 附加磁盘设备 attach-interface 连接网络接口 autostart 自动启动一个域 blk ...

  6. 【ARTS】01_42_左耳听风-201900826~201900901

    ARTS: Algrothm: leetcode算法题目 Review: 阅读并且点评一篇英文技术文章 Tip/Techni: 学习一个技术技巧 Share: 分享一篇有观点和思考的技术文章 Algo ...

  7. JSON Hijacking漏洞

    https://github.com/SkyLined/LocalNetworkScanner JS.利用浏览器漏洞当对方打开网址时,扫描对方内网信息 https://www.freebuf.com/ ...

  8. 导入数据到数据库表,报错[Err] [Row1] [Imp] 1153 - Got a packet bigger than 'max_allowed_packet' bytes

    # 在数据库新增查询,执行如下命令即可: show VARIABLES like '%max_allowed_packet%'; set global max_allowed_packet = 2*1 ...

  9. 12、OpenCV实现图像的直方图处理

    1.直方图 一幅图像由不同灰度值的像素组成,图像中灰度的分布情况是该图像的一个重要特征.图像的灰度直方图就描述了图像中灰度分布情况,能够很直观的展示出图像中各个灰度级所占的多少.图像的灰度直方图是灰度 ...

  10. fastai 2019 part1 数据集分享

    链接:https://pan.baidu.com/s/1UuQ8gJ2qXLvPK2rdIqWCMQ 提取码:ghn9